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Abstract— The cone-beam tomographic projection and the
deformation of a discrete volume are problems that have
generally been studied separately. They are combined in some
applications such as motion compensated algebraic reconstruc-
tion. In this paper, we propose two methods to compute the
cone-beam projections of a volume deformed with a known
motion. The first method is based on an inverse mapping
between the reference 3D volume and the 2D cone-beam
projection and the second method on a forward mapping. Both
methods were evaluated on a dynamic digital phantom and
confronted to another method. The quality of the cone-beam
projections was increased by 70% with both methods compared
to the projection obtained without including the motion model.
The proposed methods yield accurate linear equations, the
first step before tomographic reconstruction of the deformable
volume with algebraic methods.

I. INTRODUCTION

The cone-beam projection of a 3D discrete volume is an
important problem in image processing and more particularly
in medical imaging [1]. It is used for example to compute
Digitally Reconstructed Radiographies (DRR), to register a
3D volume on measured cone-beam projections, which is
called 2D/3D registration, or to yield linear equations for
tomographic reconstruction using algebraic methods.

However, the respiratory and cardiac motions between
the acquisition time of the volume and of the cone-beam
projections is an issue. In particular, they imply artifacts
in tomographic imaging such as blur, streaks and bands.
Several solutions have been proposed to correct these ar-
tifacts [2]. One of the most promising approaches is motion
compensated reconstruction which consists in including the
motion model in the reconstruction process. It allows to use
all the cone-beam projections for the reconstruction of a 3D
Computed Tomography (CT) image and should result in an
image with a quality comparable to CT images of static
objects.

Analytic algorithms have been the first to be adapted to
motion compensated reconstruction. They are either exact
but limited to some motions [3] or based on heuristics [4].
The latters are more suited to respiratory and cardiac mo-
tions but they do not fully correct the artifacts. Algebraic
reconstruction may therefore be a better choice. Other past
studies integrate the motion in algebraic reconstruction [5],
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[6] but, to our knowledge, no work evaluate the accuracy of
the linear equations before solving them.

In this paper, we propose two methods to model the cone-
beam projection of a discrete volume submitted to a known
deformation. One is based on an inverse mapping and the
other on a forward mapping between the discrete volume
and the computed cone-beam projections. We evaluated
the results on a dynamic digital phantom of a thorax and
compared them with another method.

II. PRELIMINARIES

A. Discrete model

The imaging system is modeled in the classical way:

A V = B (1)

where V is the 3D image of patient tissue densities which
is unknown in image reconstruction problems, and B is the
set of cone-beam projections, i.e. 2D images of attenuations.
If the patient remains static during the acquisition of the data
B, V is constant in time and A is obtained by modeling the
cone-beam transformation in a discrete formulation (see II-
C.1). If the patient moves during the acquisition, the assump-
tion that V is constant in time is false. To take this motion
into account, measured data B are linked to a reference
volume Vref corresponding to the patient position at time
t = tref and (1) becomes A Vref = B. In addition to the cone-
beam transformation, A comprises then the patient motion
between tref and each acquisition time t of the cone-beam
projections (see II-C.2). In this study, we propose different
methods to determine A if the patient motion is known.

B. Image warping

A spatial transformation consists in computing a warped
image given a source image and a mapping function. There
are two ways to compute the target image [7]. Forward
mapping consists in going through the pixels of the source
image and copying their intensity onto the target image
using the mapping function. Most of the mapping functions
do not give a pixel-to-pixel correspondence between source
and target images and it is necessary to take into account
that each source pixel can contribute partly to several target
pixels. The cost for the computation of the exact contribution
is expensive and simplifications have generally to be made.
There is then no guarantee that all intensities of the target
pixels are computed and that the sum of the splitting weights
of the source contribution is equal to one for each target
pixel. These holes and overlaps require special management.



Inverse mapping consists in going through the pixels of the
target image and getting their intensity from the source image
using the inverse of the mapping function and an appropriate
interpolation scheme. All target pixels are then computed.
Meanwhile, if several pixels of the source contribute to
one pixel of the target, the computed intensity may not be
accurate. Subdivision of the target pixels may be a solution
to avoid such problems.

C. Spatial transformations

1) Cone-beam transformation: Cone-beam projections
are acquired around the patient using a punctual source
of X rays and a two dimensional detector. The measured
attenuations can be linked to the linear sum of tissue densities
along X rays which is called cone-beam transformation. In
the static case, A links the discrete grid of attenuation coeffi-
cients with the discrete samples of the cone-beam projections
using the cone-beam transformation. Two categories of cone-
beam projection methods can be distinguished: voxel-driven
projection for forward mapping and ray-driven projection for
inverse mapping. In [8], De Man et al detailed the advantages
and the drawbacks of the two categories of approaches.
Voxel-driven projection needs a proper management of the
interpolation kernel projection, like splatting [9], to avoid
high-frequency artifacts, which is not the case for ray-driven
approaches.

2) Respiratory motion: The respiration of the patient is
an ”involuntary” motion that we cannot stop during the
acquisition time. Its measurement generally involves non-
rigid registration [5], [10] which output can be described by
a 4D motion model:

Φ : R3 × R 7→ R3 | y = Φ(x, t) = Φt(x) (2)

This function maps the 3D position of a physical point
y = Φt(x), at any time t, with its 3D position x at the
reference time tref . We supposed that Φt is a diffeomorphism
which implies that the inverse function x = Φ−1

t (y) exists.
Different parameterizations of Φ exist and we used in this
study a set of discrete 3D vector fields, with a displacement
vector for each voxel of the reference volume to the volume
corresponding to the cone-beam projection.

III. METHODS

The projection of the deformable volume involved the
composition of the respiratory motion with the cone-beam
transformation (Fig. 1). Providing that both transformations
were known, we proposed two methods, one based on an
inverse mapping and one based on a forward mapping.

Reference
Volume (3D)

�� �
Respiratory
Motion

Deformed
Volume (3D)

�� �
Cone-Beam
Transformation

Cone-Beam
Projection (2D)

Fig. 1. Link between the reference volume and a cone-beam projection.

A. Inverse mapping

1) Static projection: Among the numerous ray-driven
methods to obtain the perspective projection of a volume, we
chose the shearwarp algorithm [11]. It is close to Joseph’s
method [12] because the ray is sampled at each slice of the
volume (Fig. 2a) but the perspective is decomposed in two
transformations: a shear and a warp (Fig. 2b). The shear pass
allows to align the samples of a ray in one major direction of
the orthogonal base. An intermediate projection is obtained
by summing these samples in the major direction. The cone-
beam projection is finally computed with a 2D warp of the
intermediate projection using an affine transformation.

2) Motion compensated projection: We want to compute
the cone-beam projection of a volume Vt for any time t
using the reference volume Vref at a time tref and the motion
model Φt between Vref and Vt. We have seen in the previous
paragraph that ray-driven methods interpolate Vt intensities
along each ray corresponding to each pixel of the cone-beam
projection. As Vt is unknown, one can retrieve the intensities
from Vref using Φ−1

t whatever the ray-driven method. Fig. 2c
illustrates it for the shearwarp factorization. It required two
interpolations: the vector field values along the ray, which
is implemented with a nearest neighbor interpolation, and
the density in Vref , which is implemented with a trilinear
interpolation.
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(a) (b) (c)
Fig. 2. Inverse mapping methods. (a) Joseph interpolation [12] ; (b)
the shearwarp factorization [11], (red circles=sheared volume ; dark green
squares=intermediate image) ; (c) inclusion of the vector field in the
shearwarp projection with inverse mapping (the arrows represent Φ−1

t ).

B. Forward mapping

We propose also a new voxel-driven algorithm based on
the shearwarp factorization previously described but adapted
to forward mapping. It uses then Φt instead of Φ−1

t in the
previous method. The algorithm is first described in the static
case and then extended to the motion compensated case.

1) Static projection: The original shearwarp method [11]
is based on backward mapping to compute the shear. It does
not need to store the sheared volume because it directly
performs the slice-by-slice sum in the intermediate image.
Inverse mapping guarantees indeed that for each pixel of the
intermediate image, there is exactly one corresponding inten-
sity value interpolated in each slice of the sheared volume
(Fig. 2b). This is not guaranteed with forward mapping and
we had to modify the algorithm.

For each voxel x of the source volume, the correspond-
ing position xs in the sheared volume is computed. This
position is between 4 voxels of the corresponding slice of



the sheared volume (Fig. 2b). We store in a sheared volume
Vs the intensity of x split in the 4 neighbors with bilinear
interpolation. Bilinear weights are added in corresponding
voxels of a weigths array Vsw with the same dimensions as
Vs.

Computed intensities of Vs are normalized with Vsw by
a voxel-to-voxel division when Vsw is not zero to eliminate
overlaps. When a value in Vsw is zero, we have to manage
this hole. As the contributions of the voxels of the sheared
volume to one pixel of the intermediate image are aligned
along one direction of the orthogonal base (Fig. 2b), this is
done in 1D along this direction. The holes are filled with
the mean value of its two nearest neighbor which amounts
to weight voxels which are not holes by one plus half the
length (in number of pixels) of its adjacent holes (Fig. 3).

1 1.5 2.5 2 1 2.5 2.5 1 1

Ray

Fig. 3. Weighted sum of voxel intensities (grey) of the sheared volume
along the ray when there are holes (white).

2) Motion compensated projection: Inclusion of the res-
piratory motion is now straightforward. For each voxel
xref of the reference volume Vref , we calculate its position
xt = Φt(xref) in Vt and apply the same algorithm. The
only difference is the split of the intensity of xref in the
sheared volume Vs which is this time trilinear because the
displacement of a voxel due to the respiratory motion can
fall between two slices of Vt. The introduction of more holes
or overlaps due to the forward mapping of the respiratory
motion was also corrected with the previously described
method.

IV. EXPERIMENTS

A. Dynamic digital phantom

The digital thorax phantom at the exhale state is a sim-
plified version of the Forbild phantom (Fig. 4). A spherical
tumor having a diameter of 3 cm is positioned in the lower
part of the right lung. An analytical transformation is applied
to this phantom to obtain the inhale state. This transformation
is composed of translations and changes of volume of the
different geometric parts of the phantom. Intermediate states
between inhale and exhale were deduced linearly with a
respiratory signal between 0 and 1.

Fig. 4. Coronal slice of the digital phantom at the inhale state (reference),
with the computed motion vector field Φ1−0 between inhale and exhale
states.

B. Respiratory signal

A simulated acquisition of the dynamic phantom was gen-
erated with a synthetic respiratory signal s : R 7→ R based on
the asymmetric sinusoidal model s = s0+b cos2n(πt/τ) with
n = 2, τ = 4 s, s0 = 0 and b = 1 [13]. The sampling period
was set to 0.18 seconds and 640 analytical projections were
computed regularly along a circular source trajectory using
the open-source software Take to simulate the acquisition of
a Synergy system™(Elekta Oncology Systems Ltd., Crawley,
West Sussex, UK).

C. 4D motion model

End-inhale was chosen as the reference volume Vref .
A dense vector field representing the deformation Φ1−0

between end-inhale and end-exhale was computed using an
optical flow algorithm with a Gaussian regularization [14]
(Fig. 4). Φ1−0 was evaluated by computing the image
of the absolute difference between the end-inhale image
(Vref ) and the end-exhale image warped with Φ1−0. As
intermediate states between end-inhale and end-exhale have
been computed linearly, Φt was obtained by weighting Φ1−0

with 1 − s(t) where s is the respiratory signal and t the
time of acquisition of the cone-beam projection. We have
∇Φt(x) = 1 ∀x because the changes of the voxel densities
due to their volume variations were not simulated. This
approximation allows to compute analytically the set of cone-
beam projections used as reference.

D. Inverse of the respiratory motion

Inverse mapping required the computation of the inverse of
the discrete vector field Φ−1

t . It could have been done during
the registration process itself. In this study, we chose to
inverse Φt a posteriori with a numerical method, a problem
that has been addressed in other works. Our method was
divided in three steps. In the first step, we inversed Φt in a
forward manner: for each vector v of Φt, we attributed −v
to the vector of Φ−1

t pointed by v. In the second step, the
vectors of Φ−1

t which had not been computed in the first step
were interpolated with the nearest neighbors. In the last step,
each vector of Φ−1

t was adjusted by minimizing in a given
neighborhood the L2 norm of the vectors of Φt ◦ Φ−1

t . We
discretized the respiratory motion in 20 different respiratory
positions, which is a relevant approximation regarding the
maximum displacement between end-inhale and end-exhale
positions which is equal to 30 mm. The 20 inverse vector
fields were evaluated by computing the mean norm of the
vectors of Φt ◦Φ−1

t for all points x of the reference image.

E. Projections evaluation

We used Vref , Φt and Φ−1
t to compute the projections Pθ

with our 2 methods. The results were evaluated quantitatively
with the projections P ref

θ computed analytically, using the
Signal-to-Noise Ratio (SNR).

Our results were compared to the projection without
motion compensation using the basic shearwarp algorithm
and to the projection with an existing method proposed
by Blondel et al [5]. This method simplifies the problem



by supposing that each voxel of the volume contributes to
exactly one pixel of the cone-beam projection and allows a
faster computation of the projections. We implemented it as
they suggested with a bilinear split based on the distance
to the four neighboring pixel centers of the cone-beam
projection. We call the method voxel driven projection with
a bilinear split (VDPBS).

V. RESULTS

A. Respiratory motion

The mean intensity of the error image between the two
extrema decreased from 0.076 ± 0.252 g.cm−3 without
motion compensation to 0.008± 0.051 g.cm−3 with motion
compensation. Remaining errors were located at the borders
of the geometric parts. The mean error of the 20 inverse
vector fields was less than 0.10± 0.05 mm.

B. Projections

The minimum/mean SNR was 14.0/25.5 dB without
motion compensation, 37.6/43.4 dB for inverse mapping,
37.2/43.5 dB for forward mapping and 11.7/16.8 dB for
VDPBS. We plotted the SNR of each computed cone-
beam projection in function of the angle of acquisition θ in
Fig. 5. In all cases, the quality of the cone-beam projection
decreased when the respiratory motion was large, i.e. for low
values of the respiratory signal. The two proposed methods
performed almost equally well.

0 45 90 135 180 225 270 315 360

10

15

20

25

30

35

40

45

50

Without motion 
compensation

VDPBS

Inverse mapping

Forward mapping

Angle (°)

S
N

R
 (

d
B

)

Fig. 5. SNR of the computed projections without motion compensation,
with the VDPBS method and with the two proposed methods. The reference
is the cone-beam projection computed analytically.

VI. DISCUSSION AND CONCLUSION

The two proposed methods gave similar results in terms of
signal quality on the phantom data (Fig. 5). We improved the
mean of the SNR from 25 dB if the motion was not taken into
account to 43 dB with our two methods. VDPBS method lead
to poorer results because the methods does not use an optimal
modeling of the transformations, particularly the cone-beam
projection. The motion was visually compensated but their
results may not be sufficient for thorax imaging depending
of the use of the results. However, it was used by Blondel
et al [5] to reconstruct images of coronary arteries and they
obtain in this case good results and the higher contrast may
explain then the robustness to projection approximations.

The computation time was less a preoccupation in this
work than the quality of the results. If one excludes the
time for the disk inputs and outputs, the forward mapping

takes slightly more time (+1%) and memory (+10%) due
to the management of the holes in the sheared volume. In
comparison, Blondel et al method takes much less time (-
59%) and memory (-63%), which could be an important
criterion for other applications.

Depending on the method used to estimate the motion, one
can have Φt or/and Φ−1

t available. We propose a method to
project the reference volume in each case, which potentially
avoids to compute the inverse motion.

Such work represents the initial step of motion compen-
sated algebraic reconstruction. In the static case, the quality
of the reconstructed CT images directly depends on the
projection method and one can expect the same link in the
dynamic case. The accuracy level of the motion model may
also strongly influence the results. Obtaining it is still an open
problem but Zeng et al [10] proposed to extract it using cone-
beam data and an a priori reference volume. This 2D+t/3D
registration requires to project the deformable volume in the
registration process, which could be done with one of the
two algorithms proposed in this article.
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