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Abstract

Lung tumors can regress substantially during radiotherapy which suggests that it may be beneficial to perform
adaptive replanning during the treatment. However, the regression of visible disease is not necessarily consistent
with the regression of microscopic disease and reduction of the target volume should follow a detailed analysis
of regression of tumor border and nearby structures. We developed an algorithm based on elastic registration
to assist this analysis. The algorithm can discriminate between elastic and non-elastic regression, i.e., tumor
border regression that is consistent or inconsistent with the motion of nearby structures.
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Introduction

Adaptive radiation therapy (ART) [1] has rapidly
developed with the advent of in-room imaging such
as cone-beam (CB) computed tomography (CT) [2].
Most current clinical protocols aim at minimizing
setup errors but more gain can be expected by
re-planning patients which anatomy substantially
changes during the treatment. This work focuses
more specifically on accounting for the regression of
lung tumors in ART.

Substantial regression of lung tumors has been
observed during radiotherapy in previous studies
[3, 4, 5, 6, 7, 8]. This fact has lead to re-planning
studies using a new gross tumor volume (GTV) de-
lineated on a repeat CT acquired during the treat-
ment [9, 10]. In these studies, the GTV was expanded
to the clinical target volume (CTV) using the same
margin for the adapted plan as for the initial plan.
Therefore, the assumption is that microscopic dis-
ease (CTV) has regressed in the same way as macro-
scopic disease (GTV). In other words, the assumption
is that the invisible malignant tissues have regressed
consistently with the visible ones. To our knowledge,
there are no publications to support this assumption.

Microscopic extension can not be visualized on
macroscopic imaging (CT, PET or MRI). Only
histopathologic studies of operated patients provide
knowledge on the extent of microscopic infiltration.

As a surrogate, van Zwienen et al [8] have proposed to
analyze the motion of anatomical structures next to
the border of regressing tumors. In some patients, the
structures move along with the GTV border, which
suggests that healthy tissues have moved in the origi-
nal CTV and that CTV reduction could be beneficial.
However, in other cases, the surrounding tissue does
not follow the GTV border and there is no indica-
tion that tissues initially identified as infiltrated have
regressed.

In this work, we developed an algorithm to assist
the clinical analysis with an automated quantifica-
tion of the consistency between the regression of the
tumor border and the motion of nearby structures.

Methods and Materials

Definitions

We define two types of tumor regression observed by
comparing two CT images acquired at different frac-
tions during the radiation treatment (Fig. 1). An
elastic regression is a regression of the tumor which
is consistent with the motion of structures next to
the tumor border. Oppositely, a non-elastic regres-
sion is a regression of the tumor which is not consis-
tent with the motion of structures next to the tumor
border. The consistency of the motion of two neigh-
boring structures (the tumor border and the nearby
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structures here) is defined according to an elastic reg-
istration algorithm, hence the naming of the regres-
sion types.
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Figure 1: Schematic illustration of the two types of
GTV regression.

Elastic registration algorithm

Elastic registration, also known as deformable regis-
tration, aims at finding the non-linear mapping func-
tion between two images by computing an optimal
balance between similarity of the mapped images and
smoothness of the mapping function. We used a
multiresolution B-spline registration algorithm with
the normalized cross correlation as similarity measure
and no additional constraints on the smoothness of
the mapping function. 3 levels of resolution were used
for the B-spline control points. Their finest spacing
was isotropic and equal to 1 cm.

Elastic consistency measure

We hypothesized the following: if the motion of a
structure is elastically consistent with the motion of
nearby structures, elastic registration will produce
the same result whether this structure is included
or not in the similarity measure during registration.
From this assumption, the elastic consistency of the
motion of a structure with its neighborhood can be
quantified through the computation of the difference
between the two outputs of an elastic registration al-
gorithm obtained with and without the structure in
the similarity measure during registration. The dif-
ference is null when the motion is consistent and dif-
fers from 0 when the motion is inconsistent.

We straightforwardly translated this generic solu-
tion to the particular case of tumor regression. The
aim was to estimate if the regression of the GTV, i.e.
the motion of the GTV border, was consistent with
the motion of nearby structures. We performed two
elastic registrations, one with and one without the
GTV in the similarity measure. The amplitude of
the difference between the two vector fields was over-
layed as a colorwash on the CBCT images for spatial
measurement of the consistency.

Test dataset

Two characteristic lung patients were selected from
a previous study on anatomical changes in lung pa-
tients [8]. Repeat CBCT images were acquired dur-
ing the treatment for setup correction. CBCT images
were reconstructed with motion compensation to cor-
rect for respiration artifacts [11]. The first and the
last CBCT images of each patient, acquired with an
interval of about one month, were used for analyzing
the tumor regression. The last CBCT was initially
registered on the first CBCT using rigid registration
of the bony anatomy. The ROI excluded during elas-
tic registration was drawn such that it encompassed
the GTV on the first CBCT but not the nearby struc-
tures.

Results

Fig. 2 illustrates a tumor with mostly elastic regres-
sion. The lung structures on the posterior side of the
GTV moved along with the GTV border. This be-
havior was confirmed by the amplitude of the differ-
ence vector field between the two registrations over-
laid as a color wash: no inconsistency superior to
2 mm was observed between the motion of the GTV
border and the motion of nearby posterior structures.
The colorwash also showed differences around the
thoracic wall which indicated that the regressing tu-
mor slid along the thoracic wall, i.e. that the ribs
did not move consistently with the tumor border.
Finally, non-elastic regression was observed on the
caudal side of the tumor.

Fig. 3 illustrates a tumor with mostly non-elastic
regression. The lung structures around the initial
GTV did not move consistently with the GTV bor-
der but stayed close to their initial location. There-
fore, the first registration mapped the tumor borders
and had to find a compromise with nearby structures,
while the second registration mapped nearby struc-
tures without compromising with the GTV border.
Consequently, the amplitude of the difference vector
field was superior to 2 mm in a rim surrounding the
ROI used by the method. The difference was the
highest at the border and decreased gradually.

Discussion and Conclusions

We developed an algorithm to measure the consis-
tency of GTV regression with the motion of nearby
structures using elastic registration. When the re-
gression was elastic, no differences were observed
whether the GTV was included or not in the registra-
tion (Fig. 2). When the regression was non-elastic,
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Figure 2: Example of a tumor with mostly elastic regression. The red contour is the contour of the mask used
to exclude the GTV from the registration. Left: full sagittal slice of the CBCT image. Middle: zoom in the
squared ROI drawn in the left column with a 1 cm scale. Right: idem with the mask overlaid in opaque purple
and the amplitude of the difference vector field (between the elastic registration with and without the GTV)
overlaid as a colorwash (scale in mm).
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Figure 3: Idem as Fig. 2 for a tumor with mostly non-elastic regression.
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the elastic registration had to compromise between
the GTV border and the motion of nearby structures
which resulted in differences with the elastic registra-
tion excluding the GTV (Fig. 3).

The algorithm relies on the assumption that the
GTV border influences the registration of nearby
structures which is a typical behavior of elastic regis-
tration. Nevertheless, a clear GTV border and visible
adjacent structures are required to reliably analyze
the regression. If not, it is not possible to evaluate
the type of regression, which is also true for non-
assisted visual analysis.

The consistency measure is strongly related to the
algorithm used for non-elastic registration and its pa-
rameterization. In particular, the constraint on the
smoothness of the mapping function drives the extent
of the influence of the GTV border on the registra-
tion of nearby structures. Therefore, the size of the
inconsistency rim measured for non-elastic regression
is related to the chosen registration algorithm and its
parameterization. We used the default parameters of
our in-house implementation but each implementa-
tion is likely to produce a different answer.

The selected examples illustrate the variety of lung
tumor regressions. The best way to handle tumor
regression in ART is currently not known. Replan-
ning on smaller volumes is safer for elastic regression
than non-elastic regression because healthy tissues
have moved in the initial target volume. However,
the overlays in Fig. 2 and 3 show that the behavior
is not binary. Clinical decision on replanning must
account for the complexity of tumor regression and
the algorithm developed in this study can assist it.
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