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ABSTRACT

In this work, we address the problem of the reconstruction of binary images from a small
number of noisy tomographic projections. Recently, a new stochastic level-set approach
was investigated to refine the reconstruction. The main limitation of this method is that
it is only changing the boundaries of the reconstructed regions. In this work, we study a
new stochastic approach based on Total Variation (TV) regularization with box constraints.
The main advantage of this method is that random shape and boundaries variations can
be included in a new way and that topology changes can be also added. The methods
are tested on two complex bone micro-CT cross-section images for different noise levels
and number of projections. While for the higher noise levels, the best reconstructions are
obtained with a stochastic diffusion based on the Total Variation regularization, large de-
creases of the reconstruction errors are obtained when shape and topology noises are
used simultaneously.

Keywords: X-ray imaging, discrete tomography, level-set regularization, total variation reg-
ularization, inverse problems.

2000 Mathematics Subject Classification: 65J20,65J22, 65K10, 65R10.

1 Introduction

The tomographic reconstruction problem from few projections is a highly ill-posed problem with
many applications in medical imaging. It is crucial when the irradiation dose has to be re-
duced like for in vivo bone microstructure imaging. A number of attempts to solve this problem
based on sparsity priors or Total Variation (TV) regularization have been proposed in the litera-
ture (Yu and Wang, 2010; Sidky and Pan, 2006; Sidky and Pan, 2008; Sidky and Pan, 2012; De-
frise, 2011). Binary tomography methods may be proposed to simplify this challenging inverse
problem (Herman and Kuba, 2007). These methods are associated to an under-determined
linear system of equations with the linear Radon projection operator R and binary constraints:

Rf = p f = (f1, .......fn) ∈ {0, 1}n (1.1)
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relating the pixel values (fi)1≤i≤n of the image and the projections p. Only noisy projection val-
ues pn are measured. Such discrete tomography methods are very useful for X-ray tomography
of industrial objects (Schillinger, 2005) or bone imaging (VanGompel and Sijbers, 2010; Apos-
tol, Boudousq, Basset, Odet, Yot, Tabary, Dinten, Boller, Kotzki and Peyrin, 2006; Bouxsein,
Boyd, Christiansen, Guldberg, Jepsen and Müller, 2010).
Various methods have been proposed to obtain stable solutions for this reconstruction prob-
lem (Herman and Kuba, 2007; Batenburg and Sijbers, 2009; Cai and Ma, 2010) based on
convex analysis optimization (Capricelli and Combettes, 2007; Schüle, Schnörr, Weber and
Hornegger, 2005), Markov random fields (Liao and Herman, 2004) or Belief Propagation (Gouillart,
Krzakala, Mezard and Zdeborová, 2013). Rather good reconstruction results are obtained with
the TV regularization approach (Gouillart et al., 2013; Sixou, 2013). The TV regularization
method was introduced by Rudin et al. (Rudin, Osher and Fatemi, 1992) and it is very useful
for many image processing tasks. In a previous work, we have proposed to take into ac-
count the binary constraint with a level-set regularization approach (Sixou, 2013; Wang and
Peyrin, 2014; Wang and Peyrin, 2015). The two regularization approaches have been com-
pared for several noise levels and number of projections in (Sixou, 2013). The results obtained
by the two reconstruction methods are very similar. Yet, for both methods, some errors are
still present on the boundaries of the reconstructed regions and some regions are lost for a
low number of projections. The reconstructed solution corresponds to a local minimum of the
non-convex regularization functional.
It is thus interesting to escape the local minimum achieved with the level-set or TV regular-
ization with global optimization methods. Simulated annealing methods are efficient but they
are often very slow (Azencott, 1992; Catoni, 1992; Cot and Catoni, 1998). Algorithms based
on stochastic differential equations have been proposed for the global optimization of non-
convex functions (Gidas, 1995; Chiang and Sheu, 1987; Chow and Zhou, 1987; Parpas and
Rustem, 2009). Stochastic partial differential equations methods have been used for image
processing tasks like segmentation (Juan and Postelnicu, 2006). The convergence properties
of the stochastic partial differential equation obtained with the sub-differential of the TV regular-
ization semi-norm has also been studied in (Barbu and Rockner, 2009). Recently, stochastic
level-set methods have been shown to improve the reconstructed images in binary tomoga-
phy (Wang and Peyrin, 2015). Stochastic approaches have not been investigated for the TV
regularization which often outperforms the level-set regularization for binary tomography prob-
lems. Moreover, the level-set approach only modifies the shape of the 0 and 1 regions and
their boundaries. With few projection angles, the reconstructed solution is a local minimum
of the cost functional and some regions are lost. It is thus necessary to improve further the
reconstruction.
The main contribution of this work is to present new stochastic approaches to improve the
binary tomography reconstruction obtained with the deterministic TV minimization algorithm
and to compare them with the stochastic level-set method investigated recently (Wang and
Peyrin, 2014).
The principle of this new method is to use stochastic evolutions of a regularization Lagrangian
based on the Alternate Direction of Minimization method (ADMM) approach to improve the re-
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construction obtained with the TV regularization (Afonso, Bioucas-Dias and Figueiredo, 2011).
The original part of the stochastic TV regularization method compared to the stochastic level-
set method is twofold. First, the random change of the boundary is performed in a new way
with the gradient of the image or with wavelets. Moreover, random topological changes are
included to reveal new regions that can not be detected with shape changes. The numerical
results are illustrated on thresholded bone micro-CT cross-sections for various noise levels
and numbers of projections and compared with the ones obtained with the level-set stochastic
approach (Wang and Peyrin, 2015).
This paper is organized as follows. After the introduction, the deterministic approaches used
for the binary tomography problem are summarized. The TV regularization approach for bi-
nary tomography is detailed together with the ADMM algorithm, and the level-set regulariza-
tion method is also briefly presented. The section 3 presents the new stochastic approaches
considered and the various types of stochastic noises used for the stochastic partial differential
equations in this work. The next section develop a linearization of the equations. The simula-
tion details and the numerical results achieved on noisy bone CT cross-sections for different
noise levels and numbers of projections are reported and discussed before the conclusion.

2 Level-set and Total Variation deterministic methods for binary tomography

2.1 The binary tomography problem

The tomographic reconstruction problem in modern CT scanners is 3D and the imaging ge-
ometry is often not parallel. Yet, we consider here a simple parallel geometry and the direct
operator is the Radon projection operator (Natterer, 1986). The methods investigated in this
paper can be generalized to other forward projection operators. Let L(φ, s) the straight line
determined by the polar angle φ ∈ [0, π), and s the distance of the line from the origin. For an
integrable function f , the Radon transform Rf is defined as the line integral:

Rf(φ, s) =

∫
�r∈L(φ,s)

f(�r)dl (2.1)

where �r is the spatial position. The discrete formulation of the binary tomography problem
based on this continuous transform is associated to an under-determined linear system of
equations with the linear Radon projection operator R and binary constraints (Eq.1.1). The
noisy projections pn and projections without noise p are assumed to be such that ‖pn − p‖ ≈
n, where n is the noise level. In the following, we will introduce successively the level-set
regularization method and the Total Variation regularization method.

2.2 Level-set regularization for binary tomography

We assume that the function f to be reconstructed is the characteristic function of a regular
set D1 ⊂ D, f = χD1 (Sixou, 2013; Wang and Peyrin, 2015). It can be represented as
f = H(θ), where θ is the level-set function belonging to the first-order Sobolev space H1(D).
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The Heaviside distribution H is defined by:

H(θ(x)) =

{
1 if θ(x) > 0

0 otherwise
(2.2)

In a variational approach, a regularization functional E(θ) is minimized:

E(θ) =
‖RH(θ)− pn‖22

2
+ F (θ) (2.3)

where F is a regularization term for the level-set function. In this work, we considered a
Total Variation-H1 regularization functional (Egger and Leitao, 2009; DeCezaro, Leitao and
Tai, 2009), F (θ) = β1|H(θ)|TV + β2‖θ‖2H1

where |.|TV is the Total Variation semi-norm, ‖.‖H1

the Sobolev norm and β1, β2 the regularization parameters:

‖θ‖H1 = ‖θ‖L2 + ‖∇θ‖L2 (2.4)

and
JTV (H(θ)) =

∫
D

|∇H(θ)|dr (2.5)

The following smooth approximation of the Heaviside distribution has been used in this work:
Hε(x) = 1+2ε

2 (erf(x/ε) + 1) − ε where ε is a real positive constant. The optimal level-set
θ functions are found with a first-order optimality condition for the smoothed regularization
functionals, δEε(θ)

δθ = 0. From the current estimate θk, the update θk+1 = θk + δθ is obtained
iteratively with a Gauss-Newton method (Sixou, 2013).
For a small number of projections and the higher noise levels, the solution θ corresponds to a
local minimum (Sixou, 2013). The reconstruction errors are localized at the boundaries of the
binary image. In order to escape from this stationary point, a stochastic global optimization
method has been proposed based on the level-set formulation (Wang and Peyrin, 2015).

2.3 The binary tomography problem and the Total Variation regularization

The TV regularization method is one of the most successful techniques for regularization in
the field of image processing (Rudin et al., 1992; Acar and Vogel, 1994; Ng, Weiss and Yuan,
2010). In this work, the regularized solution is obtained with the minimization of a functional
including a data fidelity term and the regularization term JTV :

(P0) minimize
α

2
‖Rf − pn‖22 + JTV (f) (2.6)

where α is a parameter that determines the weight of the data fidelity term. The regularization
term is given by JTV (f) =

∫
D |∇f(r)|dr. The binary constraints lead to a non-convex inverse

problem. Convexified models obtained by relaxation of the binary constraint have often been
considered for segmentation tasks (Bresson and Osher, 2007; Brown and Bresson, 2011; Chan
and Nikolova, 2006). We use here the same type of approach and the function f to be recon-
structed is thus allowed to take values continuously from [0, 1]

Results of extensive numerical experiments show that algoritms based on the ADMM are
among the state-of-the-art methods (Ng et al., 2010; Afonso et al., 2011; Chambolle and
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Pock, 2011; Afonso, Bioucas-Dias and Figueiredo, 2010). In order to include convex con-
straints, f ∈ Cv = [0, 1]n, the following augmented Lagrangian L(f, (gi), h, (λi), λC) is consid-
ered:

L =
∑
i

(‖gi‖2 − λt
i(gi −Dif) +

β

2
‖gi −Dif‖22)

+
α

2
‖Rf − pn‖22 + ICv(h) +

β

2
‖h− f‖22 − λt

C(h− f) (2.7)

where α is a weighting parameter, β the Lagrangian parameter, ICv the indicator function of
the convex set Cv, ICv(x) = 0 if x ∈ Cv, and ∞ otherwise. The Lagrange multipliers λi,
λc are vectors in R2 and RN2

. For each pixel i, Dif ∈ R2 represents the first-order finite
difference at pixel i in both horizontal and vertical directions, (gi)1≤i≤n and h are the auxil-
iary unknowns corresponding to the gradient and to the convex constraint. Some sequences
(fk, (gki )1≤i≤n, h

k, (λk
i )1≤i≤n, λ

k
C) are constructed with successive minimizations to obtain the

saddle point of the Lagrangian. The minimization scheme is detailed in (Sixou, 2013). For
each pixel i:

gk+1
i = max{‖Dif

k +
1

β
(λk

i )‖ −
1

β
, 0}

Dif
k + 1

β (λ
k
i )

‖Difk + 1
β (λ

k
i )‖

(2.8)

The hk update is:

hk+1 = πC(f
k +

λk
C

β
) (2.9)

where πC is the projection on the convex set C. The new iterate fk+1 is obtained from the
following linear system (Wang and Peyrin, 2014; Wang and Peyrin, 2016)::

(
∑
i

Dt
iDi +

μ

β
RtR+ I)fk+1 =

∑
i

Dt
i(g

k+1
i − 1

β
λk
i }+

μ

β
Rtpδ + hk+1 − λk

C

β
(2.10)

where I is the identity operator. The Lagrange multipliers (λi), λC are updated with:

λk+1
i = λk

i − β(gk+1
i −Dif

k+1) (2.11)

λk+1
C = λk

C − β(hk+1 − fk+1) (2.12)

The solution is trapped in a local minimum of the non convex binary problem (Sixou, 2013). For
a small number of projections and the higher noise levels, the inverse problem becomes very
ill-posed and some reconstruction errors are obtained on the boundaries of the binary image.
Some regions are lost in the restored image. A new stochastic search approach to improve the
reconstruction based on this deterministic algorithm is presented in Section 3.

3 Stochastic optimization based on level-set and TV regularization

3.1 Preliminaries

Our aim is to refine the local optima obtained with the former algorithms with stochastic op-
timization methods. Stochastic gradient methods are well-known in the field of convex opti-
mization (Bertsekas.D. and Tsitsiklis.J., 2000). Let (Ω,F , P ) be a probability space, in order to
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obtain the global minimum of a function g : Rm → R, a random trajectory X(t) governed by the
following diffusion process is often used (Gidas, 1995; Parpas and Rustem, 2009; Chow and
Zhou, 2009; Chiang and Sheu, 1987; Geman and Hwang, 1986):

dX(t) = −∇g(X(t))dt+ μ(t)dW (t) (3.1)

where W=(W1(t), ....,Wm(t)) is the standard m−dimensional Brownian motion and μ(t) the
stochastic noise strength. For an appropriate annealing schedule μ(t) and under appropriate
conditions on the function g, the transition probability of X(t) converges weakly to a probabil-
ity measure which has its support on the set of global minimizers (Gidas, 1995; Parpas and
Rustem, 2009; Chow and Zhou, 2009; Chiang and Sheu, 1987; Geman and Hwang, 1986).
The main idea of this method is to combine a gradient flow and a stochastic perturbation to
escape the traps of local minimizers. In order to escape the local minima generated by the
level-set or TV regularizations, stochastic search algorithms based on the former regulariza-
tion functionals will be used that generate random trajectories. At each step of the stochastic
evolution, the binary discrepancy term ‖Rfb − pn‖ is calculated, where fb is the binary image.

3.2 Stochastic level-set evolution

To obtain a smooth evolution of the boundary curve between 0 and 1 regions, a new stochastic
level-set method was studied recently (Wang and Peyrin, 2015). We summarize in this section
the main aspects of the method. Level-set methods have been much studied for image pro-
cessing tasks (Aubert and Kornprobst, 2006). A stochastic approach based on the level-set
formalism has been proposed for segmentation purposes (Juan and Postelnicu, 2006). As
demonstrated by Juan et al. (Juan and Postelnicu, 2006), the evolution of the boundary curve
is independent of the level-set function used to represent it if the Stratanovich integral is used
for the stochastic evolution. It was proposed to improve the reconstruction image with the
following stochastic partial differential equation for the level-set function θ, for x ∈ D:

dθ(x, t) = δθ(x, t) + μ(t)|∇θ(x, t)| ◦ dW (t) (3.2)

where ◦ denotes the Stratanovitch convention (DaPrato and Zabczyk, 1992) and δθ is the
gradient calculated as explained in Section II.B. Using the definition of the Stratonovich inte-
gral (DaPrato and Zabczyk, 1992), the equation can be transformed to get the following Itô
stochastic differential equation (Juan and Postelnicu, 2006):

dθ(x, t) = δθ(x, t) + μ(t)|∇θ(x, t)|dW (t)

+
1

2
μ(t)(
θ(x, t)− |∇θ(x, t)|div( ∇θ(x, t)

|∇θ(x, t)|)) (3.3)

As detailed in the simulation section, the stochastic search is performed with an intermittent
diffusion method: level-set and stochastic level-set schemes are applied successively on ran-
dom time intervals and with random diffusion strengths μ (Chow and Zhou, 1987; Chow and
Zhou, 2009). This method was compared with the simulated annealing method in (Wang and
Peyrin, 2015). A faster convergence is obtained with the stochastic level-set approach. Yet,
with this method, only the boundaries between the 0 and 1 regions are modified. No new
region is revealed by the algorithm and it not very efficient for the higher noise levels.
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3.3 Stochastic TV based optimization

We propose to improve the solution obtained by TV regularization with stochastic search meth-
ods. Recently, some stochastic partial differential equations based on the TV regularization
have been studied theoretically (Barbu and Rockner, 2009), with an evolution equation of the
form:

dX(t) = div(sgn(∇X(t)))dt+ σ(X(t))dW (t) (3.4)

where X ∈ H = L2(Rn), W (t), t ∈ [0, T [, T > 0, is a Wiener process with covariance operator
C (DaPrato and Zabczyk, 1992; Prevot and Rockner, 1992), the map σ(., t) takes its values in
the space of Hilbert-Schmidt operators and the multi-valued function u → sgn(u) is the usual
sign function. Some preliminary results with a noise term based on the gradient of the image
have been presented in (Wang and Peyrin, 2014). In this section, we consider a coupling
of ADMM with a stochastic diffusion for the augmented Lagrangian but we study several new
noise terms. In the ADMM algorithm, the f iterate is obtained with a minimization of augmented
Lagrangian L, for the parameters ((gk+1

i ), hk+1, (λk
i ), λ

k
C):

fk+1 = argmin
f

L(f, (gk+1
i ), hk+1, (λk

i ), λ
k
C) (3.5)

More precisely, the iterate fk+1 is obtained with the first-order optimality condition:

∇L(fk+1) = 0 (3.6)

In order to improve the discontinuities of the reconstructed image and to reveal new regions,
we propose to add several types of random perturbation to the gradient with respect to f of
the Lagrangian regularization functional. We thus add some noise to the iterate fk+1, and we
consider the following stochastic partial differential equation for different types of noise σ :

df(t) = −∇L(f, (gk+1
i ), hk+1, (λk

i ), λ
k
C)dt+ σ(f(t), t)dW (t) (3.7)

We introduce in the following three different noise terms corresponding to shape and topology
changes.
1) A gradient dependent noise term written (Algorithm A1):

σ(f(t), t)dW (t) = μ1(
∂f

∂x
dW1(t) +

∂f

∂y
dW2(t)) (3.8)

where (Wk(t))k=1,2 are independent Wiener random fields on H with a continuous covariance
function Ck with a bounded integral kernel rk, and μ1 a positive constant that controls the
strength of the noise. The gradient of the function f is used to detect the boundaries. This type
of noise will be associated to a stochastic perturbation of the shape of the 0-1 regions with a
change of their boundaries. The aim is to improve the efficiency of the method with random
perturbations localized on the reconstruction errors, without changing the regions that are well
restored.
2) An additive noise with an adapted covariance operator (Algorithm A2):
Let us assume that the noise covariance operator C : H → H is a linear symmetric non-
negative compact operator with eigenvalues μk and with a complete normalized eigenfunctions
(φk)k≥1 system:

Cφk = μkφk (3.9)
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and that it is a trace class operator:

‖C‖L1 = Tr(C) =

∞∑
k=1

μk < ∞ (3.10)

Under the former assumptions, the C-Wiener process W (t) has the following series represen-
tation (DaPrato and Zabczyk, 1992; Prevot and Rockner, 1992):

W (t) =

∞∑
k=1

√
μkω

k
t φk (3.11)

where {ωk
t } is a sequence of independent, identically distributed standard Brownian motions

in one dimension. In this work, the eigenfunctions φk will be the one obtained from a truncated
wavelet decomposition of the boundary. The eigenvalues {μk}k∈J corresponding to the high
frequency wavelets used for the decomposition of the boundary are set to a constant value μ2.
The other eigenvalues of the covariance operator are set to zero. The noise term can thus be
written:

W (t) = μ2

∑
k∈J

ωk
t φk (3.12)

where μ2 is a positive constant. With this approach, the covariance of the noise is adapted
to the boundary between the 0 and 1 regions since only the wavelets corresponding to the
decomposition of the transition regions are taken into account. The aim is to apply the random
perturbation on the discontinuities between the 0 and 1 regions. This type of noise term is
expected to improve the performance since it is localized on boundaries reconstruction errors.
3) A nonlinear gradient dependent noise term is also considered given by:

σ(f(t))dW (t) = μ3(1− f(t))R∗(Rf(t)− pn)dW (t) (3.13)

where μ3 is a positive constant and W (t) a C-Wiener random field with a bounded kernel. This
noise term is proportional to the gradient of the data term of the objective functional. It is larger
in the 0 regions of the image. The rationale behind this choice is to modify the topology of
the 0 and 1 regions. With this type of random perturbation, new regions may be introduced
depending on the value of the gradient of the data term. This type of noise can be added to
the noise terms used in the algorithms (A1) and (A2) leading to the algorithms (A3) or (A4)

respectively.

4 Linearisation of the evolution equations

Some stochastic algorithms based on the ADMM method have been investigated in (Ouyang
and Gray.A.G., 2013). An additional regularization term is included in the Lagrangian to ob-
tain a stable solution. It ensures the unicity of the solution but prevents the full exploration
of the image solution space. Moreover, the algorithm does not use the reconstruction er-
ror distribution. The stochastic evolution equations proposed in our work are coupled and
non-linear. Convergence results are difficult to demonstrate. In this section, we present an
approximate linear system describing the dynamical evolution of the iterates. This type of lin-
earization is similar to the one applied in the non-linear discrete Kalman filtering field (Einicke
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and White.L.B., 1999; Einicke, 2012). We develop a linearized version of the system by starting
with a reference trajectory which is calculated with the deterministic ADMM iterations without
the stochastic noise. To obtain simple update formula, the convex constraints applied with
Eq.2.9. and Eq.2.12. are not considered in the linearized equations. The iterates for the refer-
ence trajectory are denoted fk

r , gki,r, λ
k
i,r and the stochastic iterates fk, gki , λk

i . The differences
between the iterates obtained with or without noise fk and fk

r , gki,r and gki , λk
i and λk

i,r will be
denoted as δfk, δgki , δλk

i respectively. The Wiener noise is replaced by a n-dimensional Gaus-
sian distributed random variable W0 with mean zero and covariance Γ0, W0 = N (0,Γ0). We
assume that the Gaussian noise W0 and the iterates fk, gki , λk

i are uncorrelated for all indexes
k.

Proposition 4.1. Under the former assumptions, the iterates {δfk} are Gaussian sequences
and the steady state covariance is determined by the covariance equation H∞Γ∞

f Ht∞ = G(f∞
r )⊗

Γ0 with with H∞ = ( 1
β−1

∑
iD

t
iDi+

μ
βR

tR+ I) and G is a function of the reference steady state
f∞
r .

Proof. Eq. 2.10 is linear and the linear model that describes the dynamics of δfk is:

(
∑
i

Dt
iDi +

μ

β
RtR+ I)δfk+1 =

∑
i D

t
i(δg

k+1
i − 1

β δλ
k
i }+G(fk

r )⊗W0 (4.1)

where G(fk
r ) is a function of fk

r describing the different types of noise and where ⊗ denotes
the Kronecker product.
The equation 2.8 can be rewritten with the proximity operator of the Euclidean norm in R

n, ‖.‖2,
with vk = Dif

k + 1
β (λ

k
i ).

prox‖.‖2/β(vk) = (1− 1

β‖vk‖2 )+vk =

{
(1− 1

β‖vk‖2 )vk if vk ≥ 1/β

0 otherwise
(4.2)

The proximity operator may be linearized around vk,r = Dif
k
r + 1

β (λ
k
i,r):

prox‖.‖2/β(vk) = (1− 1

β‖vk,r‖2 )vk,r + (1− 1

β‖vk,r‖2 )h+
1

β

vk,r
‖vk,r‖32

< vk,r, h > (4.3)

with h = Diδf
k + 1

β δλ
k
i .

We thus find the linear approximation:

δgk+1
i = (1− 1

β‖vk,r‖2 )(Diδf
k +

1

β
δλk

i ) +
1

β

vk,r
‖vk,r‖32

< vk,r, Diδf
k +

1

β
δλk

i > (4.4)

The equation 2.11 is linear and thus we obtain the following update formula:

δλk+1
i = δλk

i − β(δgk+1
i −Diδf

k+1) (4.5)

It is possible to show recursively that for all n the vector ((δfk)0≤k≤n, (δgki )0≤k≤n, (δλ
k
i )0≤k≤n) is

Gaussian. Let us assume the first vector (δf0, (δg0i )i, (δλ
0
i )i) is Gaussian and that ((δfk)0≤k≤n,

(δgki )0≤k≤n, (δλ
k
i )0≤k≤n) is Gaussian. From the linear relations Eq.4.4 and Eq.4.5, we see that

( (δgki )0≤k≤n+1, (δλ
k
i )0≤k≤n+1) is Gaussian. We have assumed that W0 is uncorrelated with the

vector ((δfk)0≤k≤n, (δgki )0≤k≤n, (δλ
k
i )0≤k≤n), thus it is also the case for G(fk

r ) ⊗ W0. There-
fore the sequences ( (δgki )0≤k≤n+1, (δλ

k
i )0≤k≤n+1, G(fk

r )⊗W0) and (δfk)0≤k≤n+1 obtained with
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Eq.4.1 are Gaussian.
We can thus assume that the iterates δfk, δgki , δλ

k
i are Gaussian random variables with mean

0 and covariance matrices Γk
f ,Γ

k
g,i,Γ

k
λ,i: fk = N (0,Γk

f ), g
k
i = N (0,Γk

g,i) and λk
i = N (0,Γk

λ,i).
From Eq.4.5 we obtain:

Γk+1
λ,i = Γk

λ,i − β(Γk+1
g,i −DiΓ

k+1
f Dt

i) (4.6)

Let us denote H = (
∑

iD
t
iDi +

μ
βR

tR+ I), Equation 4.1 gives:

HΓk+1
f Ht =

∑
i

Dt
i(Γ

k+1
g,i − 1

β
Γk
λ,i)Di +G(fk

r )⊗ Γ0 (4.7)

Ignoring the second term of Eq.4.3, to get a simple covariance equation, we obtain for large
values of β:

Γk+1
g,i = (1− 1

β‖vk,r‖2 )(DiΓ
k
fD

t
i +

1

β
Γk
λ,i) (4.8)

The steady state equations obtained with k → ∞ are the following:

Γ∞
g,i = DiΓ

∞
f Dt

i (4.9)

HΓ∞
f Ht =

∑
i

Dt
i(Γ

∞
g,i −

1

β
Γ∞
λ,i)Di +G(f∞

r )⊗ Γ0 (4.10)

Γ∞
g,i = (1− 1

β‖v∞,r‖2 )(DiΓ
∞
f Dt

i +
1

β
Γ∞
λ,i) (4.11)

From Eq.4.10, we deduce that:

Γ∞
λ,i =

β

β‖v∞,r‖2 − 1
DiΓ

∞
f Dt

i (4.12)

HΓ∞
f Ht =

2− β‖v∞,r‖2
1− β‖v∞,r‖2

∑
i

Dt
iDiΓ

∞
f Dt

iDi +G(f∞
r )⊗ Γ0 (4.13)

and thus
H∞Γ∞

f Ht
∞ = G(f∞

r )⊗ Γ0 (4.14)

with H∞ = ( 1
β−1

∑
iD

t
iDi +

μ
βR

tR+ I).

We obtain a linear covariance equation with a forcing covariance Γ0. If H∞ is inversible, the
covariance matrix Γ∞

f is a well-defined positive definite covariance matrix and the final iterate
is a Gaussian vector fluctuating around f∞

r , N (f∞
r ,Γ∞

f ). With this linear model, it is possible to
have a qualitative understanding of the properties of the steady state solution. With the gradient
noise term or the wavelet decomposition of the boundaries, the forcing term G(f∞

r ) ⊗ Γ0 is
located on the boundaries bewteen the 0 and 1 regions. It the β parameter is large, then the
inverse H−1∞ can be approximated by H−1∞ ∼ I − μ

βR
tR − 1

β−1

∑
iD

t
iDi. The discrete sum∑

iD
t
iDi corresponds to the smoothing continuous operator Laplacian Δ. Let us assume the

boundary region between the 0 and 1 regions may be decomposed with a shearlet basis. Such
shearlet bases provides sparse representation for 2D functions which are smooth away from
discontinuities along curves and they nearly diagonalizes the pseudo-differential operator R∗R.
The boundary region is thus globally preserved by the operator H−1∞ . In the framework of our
linear model, the main part of the boundary noise is concentrated in the vicinity of the interface
between the 0 and 1 regions.
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5 Comparison of the algorithms: results and discussion

In the following, we have compared the convergence properties of the stochastic level-set
method and of the TV based stochastic method. We present in this section some simulation
details and the numerical results.

5.1 Simulations details

The TV and stochastic TV based methods, the level-set and stochastic level-set methods were
applied to simulated projections of experimental bone cross-sections obtained with synchrotron
micro-CT (voxel size: 15 μm) (Apostol et al., 2006). Fig.1 displays the bone cross-section im-
ages of size N2 = 2562 reconstructed from Filtered Back Projections (FBP) (Natterer, 1986)
with 400 projections in a parallel beam geometry and 400 X-rays per projection and subse-
quently thresholded. These images correspond to high and low bone density cross-sections.
These images are denoted f∗ and are considered as ground truth images. The discrete ap-
proximation of the projection operator R is the Radon transform implemented on Matlab Image
Processing Toolbox. For both stochastic methods, an intermittent diffusion is applied and the
deterministic and stochastic schemes are applied successively and iteratively. At the end of
each deterministic or stochastic run, the image is binarized.
The stochastic methods were tested for M = 5, M = 10, M = 15 or M = 20 equally spaced
noisy projections, Nr = 367 rays per projection, with a Gaussian noise added to the projection.
The noise distribution can be characterized by the standard deviation of the noise σp or peak
to peak signal to noise ratio PPSNR:

PPSNR = 20log(
fmax

nmax
) (5.1)

where fmax and nmax are the maximul signal and noise amplitude respectively. The noise
standard deviations tested are σp = 3 (PPSNR=20/15 dB), σp = 6.5 (PPSNR=14/8.5 dB), σp =
10 (PPSNR=11/5 dB), σp = 20 (PPSNR=6/1.5 dB) or σp = 30 (PPSNR=3.7/1 dB) respectively
for high and low density bone cross-sections. The noise level n can be estimated by n =√
MNrσp.

5.1.1 Level-set based methods

We summarize here the implementation of the method detailed in (Wang and Peyrin, 2014;
Wang and Peyrin, 2015).
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(a) (b)

Figure 1: Reconstructed images of the bone cross-section from 400 projections with the FBP
algorithm. (a) High density bone image, (b) Low density bone image.

Stochastic level-set scheme

Step 1: Apply the deterministic level-set regularization scheme starting with initial level-set
function θ0 = 0 to obtain an image f0. The iterations are stopped when the iterates stagnate
‖fk+1−fk‖2

‖fk‖2 < 0.01. At the end of this first optimization step, the Morozov discrepancy princi-
ple (Engl.H.W. and Neubauer.A, 1996) is not satisfied. The discrepancy term is much higher
than the noise level, ‖pn − Rfb‖ >> n. After binarization, some reconstructions errors are still
present at the boundaries between the 0 and 1 regions.
For k=1 to Maxiter do:
Step 2: Apply the stochastic algorithm. To discretize Eq.3.3, we have used an explicit scheme
with finite differences, the WENO scheme (Jiang.G.S. and Peng.D, 2000) with spatial discretiza-
tion step Δx = 1 and time step Δt = 0.1. The noise strength μ and the number of iterations
Nsto are chosen randomly with a uniform distribution in [0.01, 0.1] and [1, 100].
Step 3: Apply a deterministic level-set step with 100 iterations.
Step 4: Binarize the image by thresholding and reinitialize the level-set function θ with the
signed distance function.

To obtain a good accuracy, the ε parameter should be sufficiently small, ε = 0.03. The regu-
larization parameter β1 was set to 0 because the H1 term dominates the TV term (DeCezaro
et al., 2009). And we tested many parameters (β2) to obtain the best decrease of the level-set
regularization functional Eq.2.3.

5.1.2 Total Variation based methods

Here are the details of the implementation of stochastic TV method.
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Stochastic Total Variation scheme

Step 1: Apply the deterministic TV regularization and the ADMM deterministic algorithm. The

iterations are stopped when the iterates satisfies ‖fm+1−fm‖2
‖fm‖2 < 0.01. The final image obtained

at the end of the optimization process depends only on the parameter α. The α parameter is
chosen such that the end of the minimization process ‖Rf(α)− pn‖ ∼ n.

After binarization, the initial binary reconstructed image is denoted as f0. The discrepancy term
of f0 is well-above the noise level and the Morozov principle is not fulfilled any longer. A local
minimizer is again obtained.
For k=1 to Maxiter do:
Step 2: Apply the stochastic TV algorithm. From the iterate fk

STO, the next iterate fk+1
STO is

calculated as the sum of the ADMM iterate fk+1 and one or several discretized noise terms on
random time steps in the range [0, Tmax] with Tmax = 100 and with stochastic noise strengths
μi, (i=1,2 or 3). For each type of noise, the noise strength parameters μ1, μ2, μ3 are chosen by
trial and error to obtain the best decrease of the discrepancy term ‖Rfk

b − pn‖, where fk
b is the

binarization of the grey-level image.
Step 3: Apply the deterministic TV minimization. The TV deterministic iterations are stopped

when ‖fm+1−fm‖2
‖fm‖2 < 0.01.

(a) (b)

Figure 2: (a) Reconstruction of the high density image f0 obtained with the TV regularization
for σp = 20 (PPSNR=6 dB) and M=10 projections, MR = 8.12%; (b) Corresponding error map.

For comparison, some simulations have been performed in which the stochastic diffusions
are replaced by a successive TV regularization minimizations separated by binarization steps
(Algorithm A0). The infinite-dimensional Wiener processes were approximated by Gaussian
random field on the image grid. The discretization of the stochastic partial differential equation
and of the Wiener processes were performed with classical finite difference methods and the
Euler-Maruyama method (Kloeden.P.E and Platen.E, 1992). The C-Wiener processes were
approximated with stationary Gaussian random fields with a correlation function C given by
its Fourier transform C̃(k) = (|k|2 + 1)−2. These random fields were generated via FFT with
independent normal distributed random numbers. For the algorithm (A2), we assume that
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(a) (b)

Figure 3: (a) Reconstruction of the low density image f0 obtained with the TV regularization for
σp = 20 (PPSNR=1.5 dB) and M=10 projections, MR = 3.14%; (b) Corresponding error map.

the image f admits a sparse representation in an orthogonal wavelet basis {φk, k ≥ 0}. The
index set describes the various levels of the resolution, the different positions and types of
wavelet (Daubechies, 1992). The image f can thus be written f = W∗v, where v ∈ l2 is
a wavelet coefficients vector, and W∗ a synthesis operator. In this work, we have used the
orthogonal Daubechies wavelet basis (Matlab implementation) and a 2-level wavelet decom-
position of the images. Only the high frequency wavelet coefficients with the vertical, horizontal
and diagonal details are taken into account in the noise term. These coefficients corresponds
to the boundary between the 0 and 1 regions. For the algorithms A3 and A4, the homogeneous
noise term is calculated at each iteration with the formula μ3(1−fk)Zk

√
ΔtR∗(Rfk−pn) where

the (Zk)k≥0 are spatially correlated Gaussian random variables in RN2
. The time step Δt is

fixed to 0.1.

5.2 Numerical results

We present in this section the numerical results obtained with the different optimization meth-
ods. In order to have some quantitative results, the binarization of the grey-level image, fk

b , is

obtained at each iteration with a threshold of 0.5 and the data term |‖Rfk
b −pn‖−n|

n is calculated.
The efficiency of the reconstruction process is evaluated with the misclassification rate MR:

MR =

∑ |fb(i)− f∗(i)|
N2

× 100% (5.2)

where fb is the binarized version of the reconstructed image and f∗ is the ground truth. The
uncertainty on the optimal misclassification rate, MR(%), estimated from several noise realiza-
tions and changes of 10% of the regularization parameters, is ΔMR = 0.05%. The negative
rate nMR(%), positive rate pMR(%) are also evaluated.

⎧⎨
⎩ nMR =

∑N2

i=1 |fb(i)−f∗(i)|
N2 × 100% if fb(i)− f∗(i) < 0

pMR =
∑N2

i=1 |fb(i)−f∗(i)|
N2 × 100% if fb(i)− f∗(i) > 0

(5.3)
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With the same input data, the FBP algorithm followed by thresholding leads to very bad recon-
struction results with misclassification rates MR between 30% and 40%.

5.2.1 Level-set based method

The results are fully detailed in (Wang and Peyrin, 2015). They will be summarized here for
a comparison with the stochastic Total Variation method. The initial value of the data term
obtained after the first level-set scheme is well above the noise levels. The level-set algorithm
can not escape this local minimum. With the iterations, a significant decrease of the data
term is achieved towards these noise levels with the stochastic level-set method. A significant
decrease of the misclassification rate as a function of the number of iterations is also obtained.
The missclassification rates, negative rates, positive rates and data terms obtained at the end
of the simulations are summarized in Table 1. As seen from the table, a large decrease of the
misclassification rates was achieved with the stochastic level-set approach for the low noise
levels and numbers of projections investigated (Wang and Peyrin, 2015). At the end of the
simulations, the errors on the boundary of the images are much lower. The smooth evolution
of the boundary proves to be more efficient than a Markov chain approach (Wang and Peyrin,
2015). The stochastic level-set method corresponds to a shape evolution and does not modify
the topology of the 0 and 1 regions of the reconstructed images. The Table 1 also displays
the misclassifications rates obtained with the TV methods. The TV deterministic optimization
gives misclassifications rates that are a little higher than the ones achieved with the stochastic
level-set method. Some improvement is obtained with the stochastic TV scheme (A4) with a
low noise strength. The best misclassification rates are similar for the two stochastic search
methods for these low noise levels for M=15. The stochastic TV method outperforms the
stochastic LS scheme for a lower number of projection angles M=10.
Yet, the improvement of the reconstruction with stochastic level-set method is not clear for low
density images where many regions are missing in the first reoncstructed images and also for
the higher noise levels. The stochastic TV method is much more effective in these cases, as
detailed in the following subsection. It is thus interesting to study methods to add stochastic
noise in the framework of the TV regularization and random perturbations of the topology of
the images to reveal new regions.

5.2.2 Stochastic evolutions based on TV regularization

Two examples of the reconstructed images f0 obtained with the deterministic TV algorithm and
the corresponding error maps for the high density and low density bone images are displayed
in Fig.2 and Fig.3 with the projections number M = 10 and the standard deviation of the
noise on the projections σp = 20. Similarly to the reconstruction results obtained with the
deterministic level-set method, some errors are still present on the boundary regions of the
image. Especially, for the low density bone image, large regions have disappeared from the
restored image.
For the dense bone image, the evolution of the discrepancy term ‖Rfk

b − pn‖ for the bi-
nary image starting from the best image f0 obtained with the TV regularization with box
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Table 1: Misclassification rates MR ( % ), negative rates nMR ( % ), positive rates pMR ( % ),
| ‖ Rf − pn ‖ −n|/n obtained with the two level-set methods, and the two TV methods.

M,σp LS Stochastic LS TV Stochastic TV

M=15
σp = 3

2.02

1.51

0.51

0.36

1.56

0.71

0.85

0.08

1.73

0.89

0.84

0.16

1.51

0.86

0.65

0.07

M=15
σp = 6.5

3.05

2.35

0.70

0.18

2.48

1.29

1.18

0.03

2.71

1.49

1.22

0.02

2.48

1.43

1.05

0.01

M=10
σp = 3

3.29

2.61

0.68

0.86

2.55

1.31

1.24

0.23

2.41

1.39

1.01

0.34

2.08

1.14

0.94

0.09

M=10
σp = 6.5

4.46

3.54

0.92

0.37

3.97

2.26

1.72

0.09

3.40

2.21

1.19

0.09

3.12

1.98

1.14

0.03

constraints, with M=10 projection angles and the standard deviation of the noise on projec-
tion σp = 20 is displayed in Fig.4 as a function of the iteration number for the algorithms
(A0), (A1), (A2), (A3), (A4). The time of every stochastic TV iteration is very similar for the al-
gorithms (A1)....(A4) and it is 20 % longer than the time of the TV iterations, and 30 times
shorter than the time of one stochastic LS iteration.
With the iterations, some decrease of the discrepancy term related to the binary image towards
the noise level n = 1210 (σp = 20) is observed for these stochastic algorithms. The results for
σp = 30 and M = 15 are very similar. The change of the discrepancy term is below 5 % for
different noise realizations.
The evolution of the misclassification rates are displayed on Fig.5 for the same noise level
σp = 20, the number of projections M = 10 and the same algorithms. There is a clear corre-
lation between the decrease of the discrepancy term and the decrease of the misclassification
rate. Similar decreases are obtained for the higher noise levels and for a higher number of pro-
jections. The misclassification rates and values achieved for the minimum of the binary data
term are summarized in Table 2 for the various number of projections and noise levels. The
stochastic approaches are more efficient than that a TV regularization used repeatedly (A0). A
significant decrease of the reconstruction errors is obtained with the algorithms (A1) and (A2)

where the noise is concentrated on the boundaries. The more effective boundary noise term
is achieved with the wavelet implementation (algorithm A2). Yet, better results are found with
the schemes (A3) and (A4) when some additional noise proportional to the derivative of the
gradient is also added to modify the image. These two types of noise may be understood as
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Figure 4: Evolution of the discrepancy term as the function of the iteration number for the high
density bone image M = 10, σp = 20 and for the algorithms A0(i), A1(ii), A2(iii), A3(iv), and
A4(v). The noise level n is displayed for comparison with dotted lines.
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Figure 5: Evolution of the misclassification rate as the function of the iteration number for the
high density bone image σp = 20 and for the algorithms A0(i), A1(ii), A2(iii), A3(iv), and A4(v).

shape and topological stochastic modifications of the images. The image and the error map
obtained for the minimum value of the discrepancy term for the algorithm (A4) are displayed in
Fig.6, for a number of projection M = 10 and the standard deviation of the noise on projection
σp = 20. Very similar images are obtained with the algorithm (A3). The missclassification rate
calculated for these images is very close to the minimum rate achieved during the stochastic
evolution. The boundary smoothness drops significantly but the errors on the boundaries have
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Table 2: Misclassification rates MR ( % ), negative rates nMR ( % ), positive rates pMR ( %
), | ‖ Rf − pn ‖ −n|/n obtained with the stochastic algorithm based on the Total Variation for
high density bone image.

M,σp TV
Stochastic TV

A0 A1 A2 A3 A4

M=15
σp = 20

7.18
1.68

5.50

0.16

6.89

1.68

5.22

0.14

6.82

1.44

5.38

0.15

6.60

1.27

5.33

0.16

5.03

1.86

3.17

0

5.03

1.84

3.19

0

M=15
σp = 30

9.54

1.33

8.21

0.16

9.36

1.21

8.15

0.16

7.29

1.29

7.99

0.15

9.17

0.92

8.25

0.17

6.58

2.11

4.47

0.01

6.30

1.73

4.57

0.01

M=10
σp = 20

8.12

1.87

6.26

0.17

7.45

1.69

5.76

0.13

6.92

1.32

5.61

0.13

6.51

1.28

5.23

0.11

6.57

2.42

4.15

0.03

6.16

2.02

4.15

0.01

M=10
σp = 30

10.18

1.19

9.0

0.19

9.60

1.30

8.30

0.15

9.30

1.34

7.96

0.14

8.34

1.74

6.60

0.08

7.70

2.13

5.56

0.03

7.67

2.24

5.43

0.02

been much reduced. Some new regions have appeared, especially for the higher noise level.
Similar simulations have been performed for M=15 projections. The best performance is again
achieved with the combination of boundary noise and homogeneous noise.

(a) (b)

Figure 6: (a) Best reconstruction for the high density image obtained with the the nonlinear
diffusion equation (A4) for σp = 20, and M = 10 projections, MR = 6.16%; (b) Corresponding
error map.

For the low density bone image, the evolutions of discrepancy term ‖ Rfk
b − pn ‖ and the
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misclassification rate for the binary image starting from the best image f0 obtained with TV
regularization with box constraints for the algorithm (A4) are displayed in Fig.7 and Fig.8 re-
spectively. The misclassifications rates obtained are summarized in Table 3. The reconstructed
images are displayed in Fig.9.

Table 3: Misclassification rates MR ( % ), negative rates nMR ( % ), positive rates pMR ( %
), | ‖ Rf − pn ‖ −n|/n obtained with the stochastic algorithm based on the Total Variation (A4)
for sparse image.

M,σp TV Stochastic TV (A4)

M=5
σp = 10

3.05

0.17

2.88

0.30

2.91

0.2

2.71

0.25

M=10
σp = 10

2.39

0.47

1.91

0.13

2.08

0.51

1.56

0.06

M=20
σp = 10

1.96

0.23

1.72

0.13

1.67

0.30

1.37

0.06

M=20
σp = 20

3.14

0.07

3.06

0.11

2.62

0.34

2.29

0.05

The correlation between the decrease of the discrepancy term and the decrease of the mis-
classification rate is clear for the four cases investigated. With the increase of the projection
number and the decrease of the noise level, the inverse problem is less ill-posed and the
stochastic method based on TV regularization is less useful to achieve a better reconstruction
for this low density bone image. For example, for M = 20, σp = 20, the discrepancy term
‖ Rf0 − pn ‖ of the first reconstructed image f0 is very close to the noise level and it is not
possible to improve much the reconstruction.
From these results, it is possible to compare the two stochastic methods presented. The
stochastic level-set algorithm leads to a clear improvement of the reconstruction of the bound-
aries between the 0 and 1 regions. It is very useful for low noise levels but is does not yield
improved reconstructions for the higher noise levels and for the low density image. For the
higher noise levels, the stochastic TV based approach is more efficient because it leads to a
modification of the boundaries but it also reveals new regions in the image when two types of
noise are included. The random fluctuations lead to shape and topology changes of the 0 and
1 regions in the restored image.
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Figure 7: Evolution of the discrepancy term as the function of the iteration number for the low
density bone image for the algorithms A4, with M = 5, σp = 10 (i), M = 10, σp = 10 (ii),
M = 20, σp = 10 (iii), M = 10, σp = 20 (iv).
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Figure 8: Evolution of the misclassification rate as the function of the iteration number for the
low density bone image for the algorithms A4, with M = 5, σp = 10 (i), M = 10, σp = 10 (ii),
M = 20, σp = 10 (iii), M = 10, σp = 20 (iv).

6 Conclusion

This work compares new stochastic diffusion methods to reconstruct binary tomography cross-
sections from few projection angles. A stochastic level-set method and a stochastic TV based
method are used to improve the reconstructions obtained with deterministic algorithms on high
and low density binary micro-CT bone sections. Stochastic level-set method leads to a de-
crease of the reconstruction errors localized on the boundaries for low noise levels and num-
ber of projections. And the stochastic search method based on the TV regularization is more
efficient for the higher noise levels and for the low density image.
A first binary image is obtained with the deterministic level-set or TV regularization methods
implemented with the Alternate Direction of Minimization method. The reconstructed image
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(a) (b)

Figure 9: (a) Best reconstruction of the low density image obtained with the the nonlinear
diffusion equation (A4) for σp = 20, and M = 10 projections, MR = 2.63%; (b) Corresponding
error map.

is then refined with intermittent stochastic diffusion methods. In the level-set stochastic al-
gorithm, the restoration is improved with a stochastic partial differential equation based on a
Stratanovitch formulation. A linearization of the ADMM equations shows that the boundary
noise remains located in the vicinity of the interface between the 0 and 1 regions with the it-
erations. In the TV based stochastic optimization method, the efficiency of different stochastic
noise terms has been tested. The first type of noise is a boundary noise term. This noise
is implemented with a finite difference estimation of the gradient or with a wavelet decompo-
sition of the boundary. The second type of noise is an homogeneous noise proportional to
the gradient of the data term. This stochastic algorithms leads also to a large decrease of
the reconstruction errors localized on the boundaries. Some new regions are also revealed
in the new reconstruction image. The best results are achieved when two types of stochastic
noises are considered, corresponding to random change in the shape and in the topology of
the images.

7 Appendix

In this section, we present some notions that are not commonl in the image processing and
tomographic reconstruction literature. Further details can be found in (DaPrato and Zabczyk,
1992; Prevot and Rockner, 1992).
Let (Ω,F ,P) be a probability space. Let D be a bounded domain in R

2 with a smooth boundary.
A family of random variables W (x, t) : Ω → R

n, t ∈ [0, T ], x ∈ D is a finite-dimensional Wiener
process with mean zero and covariance function r(x, y) if

EW (x, t) = 0 t ∈ [0, T ] x ∈ D (7.1)

E(W (x, t)W (y, s)) = (t ∧ s)r(x, y) t, s ∈ [0, T ] x, y ∈ D (7.2)

Let (Ω,F , {F}t,P) is a filtered probability spaces with filtration {F}t, t ∈ [0, T ]. Let W (t) be the
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standard Brownian motion and f(t) a continuous adapted process in R for 0 ≤ t ≤ T . For any
partition ΔT = {0 = t0 < t1 < ..... < tn = T}, we define |ΔT | = max1≤k≤n(tk − tk−1) and

Jn
t = Σn

k=1

1

2
(ftk−1∧t + ftk∧t)(W (tk ∧ t)−W (tk−1 ∧ t)) (7.3)

The sequence Jn
t converges uniformly in probability as |ΔT | → 0 to Jt written as:

Jt =

∫ t

0
f(s) ◦ dW (s) (7.4)

which is known as the Stratonovitch integral of f with respect to W .
Let D be a bounded domain with a smooth boundary and H = L2(D) a Hilbert space, and
A : H → H be a linear operator with a symmetric kernel a(x, y) = a(y, x) defined by:

Aφ(x) =

∫
D
a(x, y)φ(y)dy φ ∈ H (7.5)

If a is square integrable so that: ∫
D

∫
D
|a(x, y)|2dxdy < ∞ (7.6)

then A is a self-adjoint Hilbert-Schmidt operator.
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