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ABSTRACT

Discrete tomography refers to a class of reconstruction methods adapted to discrete-valued
images. A number of methods have specifically been developed to address the binary
case, when a two-phase object is considered. This problem may arise in different medical
applications such as vascular or bone imaging where the goal is to reduce the number of
projections. In this paper, we address the problem of binary image reconstruction for X-ray
CT imaging from a small number of projections. We propose two new schemes based on
level-set regularization. In the first approach, the binary tomography problem is formulated
as a nonlinear inverse problem and regularized with Bounded Variation-Sobolev terms.
A second level-set type method is investigated which includes the binary constraints in an
augmented Lagrangian. For comparison, we consider a classical TV regularization method.
The three schemes are applied to a simple disk image and to bone cross-sections images
of various size without and with an additive Gaussian noise. The best binary reconstruction
results are obtained with the TV algorithm for the simple disk image. Lower reconstruc-
tion errors are achieved with the level-set approaches methods for a more complex bone
geometry and for the higher noise levels.
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1 Introduction

Tomography reconstruction from a limited number of projections is an important problem in
X-ray CT. It is particularly crucial when imaging a moving organ, such as the beating heart
or when the irradiation dose has to be reduced. Several reconstruction methods have been
proposed to achieve low dose CT. These methods are generally iterative and rely on the use of
specific priors on the imaged object. Recently, with the development of compressive sensing
approaches, a number of algorithms based on TV regularization schemes have been pro-
posed (Sidky and Pan, 2008; Sidky and Pan, 2006; Ritschl, Bergner, Fleischmann and Kachel-
riess, 2011). These methods rely on a sparsity prior that may be applied in the image domain or
after applying a sparsifying transform such as a wavelet transform. A key issue in this problem



is to improve spatial resolution without increasing irradiation does. To this aim, it is interest-
ing to study the potential of new optimization schemes to reconstruct images from a limited
number of projections. Other approaches are based on discrete tomography making the as-
sumption that the image is a discrete valued function (Herman and Kuba, 2007). A number
of methods have specifically been developed to address the binary case, when a two-phase
object is considered. The binary tomography problem is associated with an under-determined
linear system of equations with the linear Radon projection operator R and binary constraints:

Rf = pδ f = (f1, · · · , fn) ∈ {0, 1}n (1.1)

relating the pixel values (fi)1≤i≤n of the image and the measured projection value pδ which is
some approximation of the correct data p, corresponding to the true solution f∗ with Rf∗ = p.
The noisy data pδ is corrupted by noise with a noise level δ, satisfying ‖pδ − p‖2 ≤ δ.
Various approaches have been proposed to solve this reconstruction problem often based on
discrete algebraic reconstruction techniques (Batenburg and Sijbers, 2009; Cai and Ma, 2010).
Some methods minimize a functional that incorporates a data term and a binary constraint, with
stochastic techniques (Rusko and Kuba, 2005) or convex analysis optimization (Capricelli and
Combettes, 2007; Schlea, Schnrra, Webera and Horneggerb, 2005). Markov random fields
have also been much used (Liao and Herman, 2004). Recently, a Belief Propagation recon-
struction approach has been proposed (Gouillart, Krzakala, Mezard and Zdeborov, 2013). The
binary tomography problem is ill-posed and must be regularized. The Total Variation regular-
ization has often been used and this method gives good results (Gouillart et al., 2013). On
the other hand, level-set methods, well established in the field of image processing, have been
designed recently to reconstruct solutions of inverse problems with non-smooth and piece-
wise constant solutions (Egger and Leitao, 2009; DeCezaro, Leitao and Tai, 2009; Tai and
Chan, 2004; DeCezaro, Leitao and Tai, 2013). These methods improve the classical Tikhonov
regularization which gives poor results for the reconstruction of non-smooth solutions. They
can be extended to the general discrete case in which the image to be reconstructed can
take several discrete values. Yet, the level-set methods have never been applied to the binary
tomography problem.
The main contribution of this work is to use the level-set regularization methods for the discrete
parallel tomography problem and to make an extensive comparison with the TV regularization
method. In this case, the direct operator is the Radon projector. We start from a formulation
of the discrete tomography problem as a nonlinear inverse problem with specfic constraints on
the function to be reconstructed. A level-set scheme with H1 − BV regularization (DeCezaro
et al., 2009) and a Piecewise Constant Level-set approach with an augmented Lagrangian ap-
proach are used to solve this nonlinear problem (DeCezaro et al., 2013). Then we compare the
results and the reconstruction errors obtained with this new methods and with the classical TV
regularization functional minimized by the Alternate Direction of Minimization Method (ADMM)
algorithm. The comparison of the inversion schemes is performed on a simple disk and on a
more complex bone CT cross-section characterized by large homogeneous regions but also
elongated and tubular structures.
This paper is structured as follows. After the introduction, the second section of this paper
deals with the Total Variation regularization method and the ADMM minimization methodology.



Then, the nonlinear inverse problem formulation of the binary tomography problem is presented
together with the level-set regularization. The next section describes the piecewise constant
level-set method and the Lagrangian approach. The numerical results obtained on a simple
disk or on noisy bone CT cross-sections of various size are reported and discussed in the last
section. We then give the main conclusions and perspectives of our work.

2 Total Variation regularization and ADMM approach

A common way to regularize the binary tomography problem is to construct a regularization
functional E(f) with a data fidelity term that measures the consistency between the estimates
and the measurements and a regularization term J(f) that imposes an a priori constraint on
the solution. The data-fitting term is usually based on the L2 norm and the regularization
functional can then be written as:

E(f) =
µ

2

∥∥∥Rf − pδ∥∥∥2

L2

+ J(f) (2.1)

The parameter µ is the regularization parameter balancing the contribution of the two terms.
In the classical Tikhonov regularization, the regularization term is given by J(f) = ‖Df‖22,
where D is a differential operator. The Total Variation regularization was introduced by Rudin
et al. (Rudin, Osher and Fatemi, 2013) to solve the noise removal problem. It has been applied
to various image processing problems (Ng, Weiss and Yuan, 2010) and it is very successful to
preserve edges but it tends to minimize the perimeter of the distinct regions inside the image.
Let Ω be a bounded open subset of R2, for an image f ∈ H1(Ω), this regularization is based
on computing the L1 norm of the gradient:

JTV (f) =

∫
Ω
|∇f(r)|dr (2.2)

Some convex constraints can be included in the regularization functional (Afonso, Bioucas-
Dias and Figueiredo, 2011; Afonso, Bioucas-Dias and Figueiredo, 2010). In this work, we
restrict to a simple TV regularization without additional constraints. For comparison with the
level-set regularization results presented in the next section, we have tried to solve the dis-
crete reconstruction tomography problem with the Total Variation regularization. The following
optimization problem (P) has been considered:

(P ) minimize
µ

2
‖pδ −Rf‖22 + JTV (f) (2.3)

Various numerical methods have been used to solve the TV regularized deconvolution problem
including partial differential equations or primal dual methods (Becker, Bobin and Candes,
2009). Results of extensive numerical experiments show that algoritms based on the Alternate
Direction of Minimization Method (ADMM) are among the state-of-the-art methods (Afonso
et al., 2011; Afonso et al., 2010; Ng et al., 2010). Algorithms based on the alternate direction
of minimization (SALSA and C-SALSA) (Afonso et al., 2011; Afonso et al., 2010) have also
been proposed to solve a number of image processing tasks, such as image painting and



deblurring. Our problem is thus formulated as a minimization problem of the ADMM form with
linear constraints. The following augmented Lagrangian is considered:

L(f, (gi), (λi)) =
∑
i

(‖gi‖2 − λti(gi −Dif) +
β

2
‖gi −Dif‖22) +

µ

2
‖pδ −Rf‖22 (2.4)

where µ is the regularization parameter, β the Lagrangian parameter. The Lagrange multipliers
(λi)1≤i≤n, is a vector in R2n2

. For each pixel i, Dif ∈ R2 represents the first-order finite
difference at pixel i in both horizontal and vertical directions, (gi)1≤i≤n is the auxiliary unknown
corresponding to the gradient. The ADMM algorithm searches for the saddle point of the
augmented Lagrangian by iterating the following equations:

gk+1
i = arg min

gi
L(fk, (gki ), (λki )) (2.5)

fk+1 = arg min
f
L(f, (gk+1

i ), (λki )) (2.6)

λk+1
i = arg min

λi
L(fk+1, (gk+1

i ), (λki )) (2.7)

In this work, we have used the isotropic TV and the l2 norm of the gradient. With the alternat-
ing minimization algorithm, the sequences (fk, (gki )1≤i≤n, (λ

k
i )1≤i≤n) are constructed with the

following iterative scheme:

gk+1
i = max{‖Dif

k +
1

β
(λki )‖ −

1

β
, 0}

Dif
k + 1

β (λki )

‖Difk + 1
β (λki )‖

(2.8)

The new iterate fk+1 is obained from the following linear system:

(
∑
i

Dt
iDi +

µ

β
RtR)fk+1 =

∑
i

Dt
i(g

k+1
i − 1

β
λki }+

µ

β
Rtpδ (2.9)

The Lagrange multipliers (λi) are updated with:

λk+1
i = λki − β(gk+1

i −Dif
k+1) (2.10)

The sequence (fk, (gki ), (λki )) which is generated by the ADMM algorithm converges to a Kuhn-
Tucker point of problem (P), (f∗, (g∗i ), (λ

∗
i )), if (P ) has one. If (P) does not have an optimal

solution, then at least one of the sequences diverges.

3 Level-set regularization of the binary tomography inverse problem

3.1 Nonlinear inverse problem formulation of the binary tomography problem

Our new level-set treatment of the binary tomography is based on a reformulation of the re-
construction as a nonlinear inverse problem and on representation of the function to be re-
constructed with a Heaviside distribution. The binary tomography problem can be set in a



continous framework, for Ω a bounded Lipschitz open subset in R2, and f ∈ L1(Ω), the Radon
transform is defined by:

Rf(φ, s) =

∫
Ω∩L(φ,s)

f(x)dl (3.1)

where L(φ, s) is the line determined by the polar angle φ ∈ [0, π), and the distance s ∈ [−a, a] of
the line from the origin. Recently, level-set methods have attracted much interest in the field of
inverse problems to reconstruct solutions with piecewise constant solutions (Egger and Leitao,
2009; DeCezaro et al., 2009; DeCezaro et al., 2013). Yet, they have never been applied to
the binary tomography reconstruction problem. For simplicity, we restrict to the binary inverse
problem. We assume that the function to be reconstructed f is piecewise constant, and it can
take two values 0 and 1 on disjoint measureable subsets Ω1, Ω2 with Ω = Ω1 ∪Ω2. We assume
that f is the characteristic function of a regular set:

f ∈ K = {χΩ1 where Ω1 ⊂ Ω and H(∂Ω1) <∞} (3.2)

where H(∂Ω1) is the Hausdorff measure of the boundary ∂Ω1. The function f can then be
represented with the Heaviside distribution and with a level-set function θ ∈ H1(Ω) as f = H(θ),
where H1(Ω) is the first-order Sobolev space and with:

H(θ) =

{
0 if θ > 0

1 otherwise
(3.3)

By the nonlinear transformation, the nonlinear inverse problem consists in determining the
level-set function θ such that:

RH(θ) = pδ (3.4)

Since H is discontinuous, it is necessary to consider generalized minimizers of the regular-
ization functional (Egger and Leitao, 2009; DeCezaro et al., 2009). These minimizers can be
approximated by minimizers of smoothed regularization functional with an approximation Hε.
The forward operator R is continous and Fréchet differentiable with respect to the L1 topol-
ogy (Natterer, 1986). It is possible to use the convergence results detailed in (DeCezaro
et al., 2009; Egger and Leitao, 2009).
The regularization functional to be minimized is then written:

E(θ) =
‖RH(θ)− pδ‖22

2
+ F (θ) (3.5)

where F is a regularization term for the level-set function. In this work, we have considered a
BV −H1 regularization functional (DeCezaro et al., 2009; Egger and Leitao, 2009):

F (θ) = β1|H(θ)|BV + β2‖θ‖2H1
(3.6)

The regularization parameters β1, β2 determine the relative weights of the stabilizing terms.
The Bounded Variation BV seminorm is given by:

|H(θ)|BV =

∫
|∇H(θ)|dx (3.7)



It penalizes the length of the Hausdorff measure of the boundary of the set Ω1. This contour
regularization term is included in the Chan-Vese functional to prevent the zero level curves
becoming oscillatory (Chan and Vese, 2001; Tai and Chan, 2004).

3.2 Implementation of the level-set regularization approach

In the numerical implementation, it is necessary to replace the Heaviside functionH by smoothed
approximations. These relaxations are usually used in image segmentation. The following
smooth approximations of the Heavyside function H has been used:

Hε(x) =
1 + 2ε

2
(erf(x/ε) + 1)− ε (3.8)

where ε is a real positive constant that controls the scale of the smoothed Dirac. The smoothed
Tikhonov regularization functional is given by:

Eε(θ) =
‖RHε(θ)− pδ‖22

2
+ β1|Hε(θ)|BV + β2‖θ‖2H1

(3.9)

The minimizers of the Tikhonov functionals are found with a first-order optimality condition for
the smoothed functionals, G(θ) = 0, with :

G(θ) = H ′εR
∗(RHε(θ)− pδ) + β2(I −∆)(θ) + β1

∂|Hε(θ)|BV
∂θ

(3.10)

where R∗ denotes the adjoint of the forward projection operator. The differential of |Hε(θ)|BV
is given by (Tai and Chan, 2004):

∂|Hε(θ)|BV
∂θ

= −δD(θ)∇. ∇θ
|∇θ|

(3.11)

where δD is a Dirac distribution. The solutions of the optimality conditionG(θ) = 0 are obtained
with a Gauss-Newton method. From the current estimate θk, the update θk+1 = θk + λδθ is
obtained with:

V ∗k Vkδθ + β2(I −∆)(δθ)− β1δ(θk)∇.
∇δθ
|∇θk|

= −G(θk) (3.12)

where Vk is the operator Vk = RH ′ε(θk). These symmetric linear systems are solved by a
conjugate gradient method. In the above formula, λ is a relaxation parameter.

4 Piecewise constant level-set PCLS with an augmented Lagrangian approach

4.1 Piecewise constant level-set approach

In the framework of the piecewise constant level-set (PCLS) approach (DeCezaro et al., 2013),
the unknown function f is represented with a smooth operator P : L2(Ω) → L2(Ω) and a
piecewise constant function φ ∈ L2(Ω) as f = P (φ). In the binary tomography problem,
the solution f takes the values 0 and 1, and thus it can be parametrized as f = φ. In the
discretized version, the assumption that the function φ is piecewise constant with value 0 and
1 corresponds to the constraint:

K(φ) = φ(φ− 1) = 0 (4.1)



where K:L2(Ω) → L2(Ω) is a smooth nonlinear operator. The binary tomography inverse
problem can be formulated as:

Rφ = pδ where φ ∈ {L2(Ω) K(φ) = 0} (4.2)

In the augmented Lagrangian method, the former constrained optimization problem is associ-
ated with an augmented Lagrangian functional:

L(φ, λ) =
µ‖Rφ− pδ‖22

2
+ β
‖K(φ)‖2L2(Ω)

2
+

∫
λK(φ) + |φ|TV (4.3)

whereµ is the regularization parameter, β is the Lagrange parameter, λ ∈ L2(Ω) is a Lagrange
multiplier. The solutions (f∗, λ∗) is obtained as the saddle point of the algorithm. The PCLS
and LS schemes both include the binary constraints and some smoothness constraints.

4.2 Implementation of the PCLS approach

For a given penalty factor β, and starting from an initial guess (φ0, λ0) the solutions (φ∗, λ∗) are
obtained by the optimality conditions:

∂L

∂φ
= 0 ,

∂L

∂λ
= 0 (4.4)

The level-set function and the Lagrange multiplier are updated iteratively. The updated level-set
function is obtained through the minimization of the Lagrangian functional φk+1 = argminφ L(φ, λk).
The gradient ∂L∂φ of the Lagrangian w.r.t φ is given by:

µR∗(Rφ− pδ) + βK ′∗(φ)(K(φ)) +K ′∗(φ)(λ) + div(
∇φ
|∇φ|

) (4.5)

where K ′∗(φ) is the adjoint of the Fréchet derivative of K. The iterate φk+1 is obtained with a
gradient step:

φk+1 = φk −
∂L

∂φ
(4.6)

The Lagrange multiplier is updated with:

λk+1 = λk −K(φ) (4.7)

5 Results and discussion

In this section, we present the simulation details and the results obtained with the Total Varia-
tion and Level-set type regularization algorithms.



5.1 Simulations details

In our experiments, the projection operator R is taken as the discrete approximation of the
Radon transform, which is implemented in the Matlab Image Toolbox. The TV regularization
and level-set methods were applied to two small images of size 256 × 256, which are shown
in Fig.1, and two large images of size 512× 512, which are shown in Fig.2. The first small im-
age is a simple disk image and the small bone image is an experimental bone cross-sections
reconstructed with 400 X-rays per projection from Filtered Back Projections (FBP) and subse-
quently thresholded. The large images are reconstructed with 729 projections. These images
are regarded as the ground-truth images. In our simulations, these image were reconstructed
from a limited number of simulated views M , with M = 20 and 50. For all images, the noisy
projections pδ were obtained by adding a Gaussian noise with standard deviation σ to the raw
projection data p. The noise level δ can be estimated with δ2 = MNrσ

2, where Nr is the
number of X-rays per projection. The σ values, the PPSNR values and the noise levels δ are
summarized in Table.1 and Table.2.

(a) (b)

Figure 1: Small images of size 256× 256: (a) Disk image;(b) Bone cross-section image.

(a) (b)

Figure 2: Large bone cross-section images of size 512 × 512: (a) Sparse bone cross-section
image;(b) Dense bone cross-section image.

In order to evaluate the quality of reconstruction images, the normalized error E(k) and mis-
classification rate MR(k) have been calculated as a function of the iteration number k:

E(k) =
‖fk − f∗‖2
‖f∗‖2

(5.1)



Table 1: Noise standards deviation σ, PPSNR and δ values for small disk and bone images
with 20 and 50 projections.

σ
Small Disk image

σ
Small bone image

M=20 M=50 M=20 M=50

8.55
δ = 732.4

PPSNR = 15

δ = 1158.1

PPSNR = 15
6.57

δ = 562.8

PPSNR = 14

δ = 889.4

PPSNR = 14

12.83
δ = 1098.6

PPSNR = 12

δ = 1737.2

PPSNR = 12
9.85

δ = 844.2

PPSNR = 11

δ = 1334.1

PPSNR = 11

25.65
δ = 2197.3

PPSNR = 7

δ = 3474.4

PPSNR = 7
19.71

δ = 1688.4

PPSNR = 6

δ = 2668.3

PPSNR = 6

Table 2: Noise standard deviation σ, PPSNR and δ values for big sparse and dense images
with 20 projections.

σ
Big images

Sparse Dense

3
δ = 365.6

PPSNR = 19

δ = 368.02

PPSNR = 25

6
δ = 731.16

PPSNR = 14

δ = 736.16

PPSNR = 19

where fk is the grey-level reconstructed image at the iteration k, and f∗ is the ground-truth
image and

MR(k) =
Nk
d

N
× 100% (5.2)

where Nk
d is the number of different pixels between the reconstructed binary image fkb and the

ground-truth, and N the total number of pixels. The binary image is obtained with 0.5 as the
threshold.
The iterations are stopped when the regularization functional stagnates. At the end of the
optimization process, Em will denote the minimum error for grey-level images fm obtained at
the final iteration m and MRm the minimum misclassification rate. The final iteration index m
is determined by the stopping condition ‖fm+1 − fm‖2/‖fm‖2 < 0.0001.
In order to obtain the best reconstruction results, it is necessary to choose optimal regular-
ization parameters. We have made an extensive sweeping of the values of the regularization
parameters. Our choice of the optimal ones is based on the Morozov discrepancy principle
(Morozov, 1984). In most cases, the parameters which are chosen such as the final iterate,
fm, satisfies the condition:

‖Rfm − pδ‖ ≈ δ (5.3)

where δ is the noise level. For the TV regularization method, there are two important param-
eters: the regularization parameter µ and Lagrangian parameter β. The β parameter controls
the speed of convergence. The reconstructed image fm(µ) obtained at the end of the opti-



mization process depends only on the regularization parameter µ. In order to find the best
combination of these parameters, we have tested many values of β and µ. In our numeri-
cal simulations, the regulation parameter µ and the Lagrange parameter β are selected when
they satisfy the condition: |‖Rf

m−pδ‖−δ|
δ ≤ ξ, with ξ = 0.01. In the classical level-set algo-

rithm, the real positive constant ε which controls the smoothed Heaviside function was set to
0.03. The regularization parameter β1 was set to 0 because the H1 term dominates the BV
term (DeCezaro et al., 2009; Egger and Leitao, 2009). Similarly to the methodology used for
the TV regularization, we tested many parameters for the level-set algorithms to satisfy the Mo-
rozov principle. When the minimum of the data term is well-above the noise level, the Morozov
principle can not be applied, but a good estimate of the optimal regularization parameters was
obtained with the L-curve method (Hansen, 2001). Finally, the difference map image fdiff is
used to evaluate the quality of binary images by visual inspection. It is defined as the difference
between binary image fmb at the end of the iterative algorithms and the ground-truth image f∗:

fdiff = |fmb − f∗| (5.4)

5.2 Numerical results

5.2.1 Small images

The small disk reconstruction images and the small bone cross-section reconstruction images
obtained for σ = 12.83 and σ = 9.85 with the various regularization methods are displayed
in Fig.3 and Fig.4 respectively. The upper images are the binary reconstruction images and
the difference maps are in the lower part. The reconstruction images are localized on the
boundaries.

(a)TV:M = 20 (b)LS:M = 20 (c)PCLS:M = 20 (d)TV:M = 50 (e)TVbox:M = 50 (f)PCLS:M = 50

Figure 3: Disk reconstruction images with σ = 12.83 , 20 and 50 projection angles, 367 X-rays
per projection. The binary reconstruction images are displayed in the upper part of the figure
and the difference maps are in the lower part.

The evolution curves of data term (||Rfk − pδ||), normalized error (E(k)) and misclassification
rate (MR(k)) with the iteration number are shown in Fig.5 and Fig.6 for the small bone image



(a)TV:M = 20 (b)LS:M = 20 (c)PCLS:M = 20 (d)TV:M = 50 (e)TVbox:M = 50 (f)PCLS:M = 50

Figure 4: Bone reconstruction images with σ = 9.85 , 20 and 50 projection angles, 367 X-rays
per projection. The binary reconstruction images are displayed in the upper part of the figure
and the difference maps are in the lower part.

with σ = 9.85, 20 and 50 projection angles.

(a)date term ‖ Rfk − pδ ‖ (b)normalized error E(k) (c)misclassification rate MR(k)

Figure 5: Evolution curves of the data term, of the normalized error and of the misclassification
rate with the iteration number for small bone image with σ = 9.85, 20 projection angles.

(a)date term ‖ Rfk − pδ ‖ (b)normalized error E(k) (c)misclassification rate MR(k)

Figure 6: Evolution curves of the data term, of the normalized error and of the misclassification
rate with the iteration number for small bone image with σ = 9.85, 50 projection angles.



Table.3, Table.4 summarize the minimum error Em for each image and noise level with 20 and
50 projections, together with the minimum misclassification rate MRm obtained, by using TV
regularization, level-set regularization and PCLS method respectively.

Table 3: Minimum errors Em and misclassification rate MRm for small disk image with 20 and
50 projections.

σ
TV LS PCLS

M=20 M=50 M=20 M=50 M=20 M=50

8.55
Em = 0.0505

MRm = 0.15%
Em = 0.0436

MRm = 0.093%
Em = 0.0603

MRm = 0.29%
Em = 0.0525

MRm = 0.2%
Em = 0.1060

MRm = 0.19%
Em = 0.0463

MRm = 0.11%

12.83
Em = 0.0535

MRm = 0.18%
Em = 0.0481

MRm = 0.14%
Em = 0.0702

MRm = 0.43%
Em = 0.0612

MRm = 0.31%
Em = 0.1134

MRm = 0.2%
Em = 0.0664

MRm = 0.22%

25.65
Em = 0.0737

MRm = 0.42%
Em = 0.0563

MRm = 0.27%
Em = 0.1198

MRm = 1.13%
Em = 0.0862

MRm = 0.66%
Em = 0.1626

MRm = 0.79%
Em = 0.1103

MRm = 0.57%

Table 4: Minimum errors Em and misclassification rate MRm for small bone image with 20 and
50 projections.

σ
TV LS PCLS

M=20 M=50 M=20 M=50 M=20 M=50

6.57
Em = 0.1476,
MRm = 2.11%

Em = 0.1041,
MRm = 1.01%

Em = 0.1442,
MRm = 2.32%

Em = 0.1192,
MRm = 1.68%

Em = 0.2088,
MRm = 3.44%

Em = 0.1324,
MRm = 1.11%

9.85
Em = 0.1714

MRm = 2.82%
Em = 0.1292

MRm = 1.58%
Em = 0.1634

MRm = 2.99%
Em = 0.1346

MRm = 2.05%
Em = 0.1976

MRm = 3.33%
Em = 0.1370

MRm = 1.69%

19.71
Em = 0.2128

MRm = 4.9%
Em = 0.0258

MRm = 2.58%
Em = 0.2046

MRm = 4.63%
Em = 0.1657

MRm = 3.05%
Em = 0.2446

MRm = 6.23%
Em = 0.1814

MRm = 2.80%

From these tables, we can infer that for small images, the TV regularization algorithm gives
in most cases the best reconstruction results with 20 and 50 projections. For the simple disk
image, PCLS method works better than LS algorithm. While for the small bone image, the LS
method works better than PCLS algorithm for few projection. For a low number of projections
(M=20) and a high noise level, the LS approach may outperform the TV regularization. When
the problem is very ill-posed and for complex structure the TV term which favors disk like
structures is not the most efficient a priori.

5.2.2 Large bone cross-section images

The three algorithms were also compared on bone cross-sections images of size 512 × 512,
and two noise levels σ = 3, σ = 6 have been tested. The evolution of normalized errors of
grey-level images with iteration number are very similar to the ones obtained with the small
images.



(a)TV:σ = 3 (b)LS:σ = 3 (c)PCLS:σ = 3

Figure 7: Sparse bone reconstruction images with σ = 3, 20 projection angles and 729 X-rays
per projection. The binary reconstructed images are displayed in the upper part of the figure
and the difference maps are in the lower part.

The evolution curves of data term (||Rfk − pδ||), normalized error (E(k)) and misclassification
rate (MR(k)) with the iteration number are shown in Fig.9 and Fig.10 for the big sparse bone
image with σ = 3 and σ = 6, and 20 projection angles. The evolution curves for the big dense
bone image are very similar. The binary reconstruction obtained for sparse images are shown
in Fig.7, Fig.8 for TV regularization algorithm, level-set method (LS) and (PCLS) method.
Table.5 summarizes the minimum error Em and minimum misclassification rate MRm obtained
for low density and high density bone cross-section images with 20 projections. From this table,
it is obvious that TV regularization method is the worst reconstruction method for large images.
It is impossible to find a regularization parameter µ and a Lagrange parameter β to make the
data term |‖Rfm−pδ‖−δ|

δ ≤ ξ, with ξ = 0.01 for TV algorithm. In our simulations, the smallest
constant ξ which satisfies this relation is ξ = 0.5. The PCLS method is better than LS algorithm
when the noise level is low. The TV method performs poorly on large bone cross-sections with
complex and elongated regions. Some details and fine structures are lost with the TV a priori
which minimize the perimeters of the boundaries. The level-set regularization includes some
constraint that favor the binary values and improves reconstruction results.



(a)TV:σ = 6 (b)LS:σ = 6 (c)PCLS:σ = 6

Figure 8: Sparse bone reconstruction images with σ = 6, 20 projection angles and 729 X-rays
per projection. The binary reconstructed images are displayed in the upper part of the figure
and the difference maps are in the lower part.

(a)date term ‖ Rfk − pδ ‖ (b)normalized error E(k) (c)misclassification rate MR(k)

Figure 9: Evolution curves of data term, normalized error and misclassification rate with the
iteration number for big sparse bone image with σ = 3, 20 projection angles.

6 Conclusion

In this paper, three reconstruction methods for binary tomography with a limited number of
projections have been compared. Two new algorithms have been studied in detail. The first
method is the classical TV based regularization approach. The optimal solution is obtained
with the ADMM algorithm. The two others approaches are level-set regularizations never ap-



(a)date term ‖ Rfk − pδ ‖ (b)normalized error E(k) (c)misclassification rate MR(k)

Figure 10: Evolution curves of data term, normalized error and misclassification rate with the
iteration number for big sparse bone image with σ = 6, 20 projection angles.

Table 5: Minimum errors Em and misclassification rate MRm for small bone image with 20 and
50 projections.

σ
TV LS PCLS

Sparse Dense Sparse Dense Sparse Dense

3
Em = 0.1320

MRm = 2.33%
Em = 0.2299

MRm = 5.61%
Em = 0.1015

MRm = 1.27%
Em = 0.1739

MRm = 3.09%
Em = 0.1016

MRm = 1.22%
Em = 0.1580

MRm = 2.71%

6
Em = 0.1342

MRm = 2.35%
Em = 0.2332

MRm = 5.59%
Em = 0.1117

MRm = 1.6%
Em = 0.1854

MRm = 3.81%
Em = 0.1365

MRm = 2.26%
Em = 0.2202

MRm = 4.85%

plied to the binary tomography problem. The first level-set method is based on a representation
of the function to be reconstructed with a Heaviside distribution which leads to a nonlinear in-
verse problem formulation of the binary tomography problem. The second one (PCLS) uses
piecewise constant functions and a minimization of an augmented Lagrangian including the
binary constraint. The performance of these algorithms are compared under different levels of
Gaussian noise on two small images ( a disk image and CT bone cross-section image) and
two large images (sparse and dense CT bone cross-section images) with different number of
projections. The regularization parameters are carrefully chosen with the Morozov discrepancy
principle. For the small images, the minimum reconstruction errors are obtained with the TV
scheme both for disk and bone images, except for a low number of projections and a high
level of noise. For the large images, the best minimum errors and misclassification rates were
obtained by PCLS algorithm when σ = 3, with LS method when σ = 6. The level-set ap-
proaches include some constraint favoring the binary values and outperforms the TV scheme
for the complex bone cross-sections. In future work, the same comparison will be applied to
real images. The method will be extended to 3D images. Some stochastic methods will be
investigated to decrease the reconstruction errors on the boundaries.
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