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Abstract

Neural network-based classification methods are often criticized for their lack of interpretability
and explainability. By highlighting the regions of the input image that contribute the most to
the decision, saliency maps have become a popular method to make neural networks interpretable.
In medical imaging, they are particularly well-suited for explaining neural networks in the con-
text of abnormality localization. Nevertheless, they seem less suitable for classification problems
in which the features that allow distinguishing classes are spatially correlated and scattered. We
propose here a novel paradigm based on Disentangled Variational Auto-Encoders. Instead of seek-
ing to understand what the neural network has learned or how prediction is done, we seek to
reveal class differences. This is achieved by transforming the sample from a given class into the
“same” sample but belonging to another class, thus paving the way to easier interpretation of
class differences. Our experiments in the context of automatic sex determination from hip bones
show that the obtained results are consistent with expert knowledge. Moreover, the proposed
approach enables us to confirm or question the choice of the classifier, or eventually to doubt it.
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1 Introduction

In forensic medicine and anthropology, sex deter-
mination is generally carried out by manually

assessing hip bone features [1]. Automatic clas-
sification algorithms are mainly guided by the
knowledge of anthropologists, taking into account
distances or angles measured from a few anatom-
ical landmarks [2–5]. Currently there exists a
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crucial need for practitioners in forensic sci-
ence to understand classification results and such
approaches have the advantage of providing eas-
ily interpretable results. But they are specifically
tailored for hip bones, and are not well suited
to sex determination from other bones or bone
fragments, which may be necessary in forensic
science.

We propose here an (automatic) deep learning-
based classification approach that is completely
data-driven, is free of expert knowledge, and is
suited to sex determination from other bones or
bone fragments. Regardless of these advantages,
the proposed method will not be used by practi-
tioners if they cannot interpret the classification
results. However, meeting the need for under-
standing and explainability is far from easy with
deep learning classification methods.

Neural networks-based classification methods
are often criticized for their lack of interpretabil-
ity and explainability. Even if there is not a clear
consensus on the definition of interpretability and
explainability, most methods dealing with inter-
pretability and explainability aim to understand
what the neural network has learned or how pre-
diction is done. One common method to interpret
the predictions of neural networks is to compute
saliency maps (SMs) [6]. However, in the context
of this application, the information extracted with
SMs was difficult to interpret (examples of SMs
are presented in Fig. 7).

To overcome this limitation, we consider here
a different paradigm, based on disentangled gen-
erative representations. The main novelty of this
paper is to show that disentanglement may bring
a better understanding of classification results,
highlighting the differences between the possible
classes.

Disentangled representations allow us to reveal
the effects of the factors of interest through the
generation of new data obtained by changing the
labels related to these factors [7]. As an exam-
ple, [8] samples the latent space so as to pro-
vide insights from brain structure representations.
Another model proposed in [9] can simulate brain
images at different ages, providing an alternative
way of interpreting the aging pattern.

We introduce a disentangled Variational Auto-
Encoder (DVAE) to obtain a hip bone mesh
representation, in which the sex label is disentan-
gled from the other latent variables. In addition to

providing the class of a given sample to analyze, a
DVAE can also provide a reconstruction for each
class, which provides supplementary information
to the user. As an example, if the input mesh is
a male one, its reconstruction as a man should be
similar to the input mesh and its reconstruction
as a woman, on the other hand, should display
interpretable differences in sex-specific regions.
Moreover, by comparing the two reconstructions
with the original mesh for several subjects, the
user can get an insight into the morphological
differences between male and female hip bones.

Although SMs and the proposed approaches
provide understanding and explainability, they do
not act at the same level. The SMs facilitate
understanding of the decision process (related to
a classification method): the purpose is to under-
stand what the neural network has learned or
how prediction is performed. An SM therefore
reveals information about the classifier itself and
not about the classification task. On the contrary,
the proposed approach makes it possible to high-
light the differences between the classes and thus
provides information on the classification problem
to be solved.

Finally, in addition to showing that disentan-
glement can bring a better understanding of clas-
sification results, we also show in this paper that
feeding a binary classifier with the reconstructions
provided by DVAE allows to obtain a classifica-
tion method that is robust to missing data and
therefore well-suited to bone fragments, which is
a major advantage (compared to other existing
methods) for applications in forensic medicine and
anthropology.

Note that the classification approach as such is
not the main contribution of this article. Indeed,
sex determination from the hip bone may not be
considered as challenging in terms of the clas-
sification task: the hip bone exhibits significant
sexual dimorphism (note that the classification
accuracy is very high (Tab. 2)). There are indeed
strong anatomical differences between the male
and female hip bones, such as the subpubic angle
and the shapes of the obturator foramen, of the
greater sciatic notch, of the pelvic inlet and of the
symphysis.

The main contribution is the proposition that
disentanglement can contribute to a better under-
standing of classification results. In particular, the
proposed method allows the users to form their
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own opinions. As an example, we will see in Sec. 6
that the reconstructions provided by the proposed
approach can sometimes allow us to confirm the
choice made by the classifier, or it can also allow
us to doubt its choice or even question it.

The remainder of this paper is organized as fol-
lows: after the presentation of the related works
(Sec. 2), we briefly explain in Sec. 3 how hip
bone meshes are obtained from CT scans. Sec. 4
presents the DVAE. Sec. 5 describes the exper-
iments and the results and Sec. 6 proposes a
discussion. Since the two reconstructions provided
by DVAE enable the users to form their own opin-
ions, Sec. 7 shows that the two reconstructions
may also be useful to improve the accuracy of an
independent classifier. This section also addresses
the case of missing data. In Sec. 8, we illustrate
SMs for the proposed networks for comparison.
Finally, Sec. 9 concludes the paper.

2 Related works

Interpretability and explainability of deep neural
networks may be achieved in two ways.

The first paradigm, known as activation maxi-
mization or feature visualization via optimization,
consists of producing intuitive visualizations that
reveal the meaning of hidden layers. This is mainly
achieved by finding a representative input that can
maximize the activation of a layer [10, 11].

The second paradigm, known as attribution
methods, looks for the network inputs with the
highest impact on the network response. In the
case of image models, this leads to the estimation
of SM, which highlights the regions of the input
image that contribute the most to the decision.
Many attribution techniques are based on back-
propagation. An SM is, for instance, computed
in [6] by computing the derivative of the output
with respect to the image. Several methods such
as SmoothGrad [12] have been proposed to reduce
the noise that is present in the gradient. Methods
such as CAM [13] and Grad-CAM [14] combine
gradients, network weights and/or activations at
a specific layer. Other attribution techniques ana-
lyze how a perturbation in the input affects the
output [15]. Finally, attribution techniques can
also be achieved via local model approximation
[16].

In medical imaging, SMs are becoming a
popular approach that provides interpretability,

especially when it comes to localization of abnor-
malities. Different sanity checks [17], such as
intra-architecture repeatability, inter-architecture
reproductibility, sensitivity to weight randomiza-
tion [18] and localization accuracy can be used to
assess the relevance of SMs. These criteria helped
to justify the use of SMs in some studies such as
in [17], but have also led to questions about the
relevance of SMs [19, 20]. This indicates that SMs
are not suited to all situations.

In our experiments, the information extracted
with SMs was difficult to interpret (examples of
SMs are presented in Fig. 7). Our hypothesis is
that SMs are not easily interpretable on medi-
cal imaging classification problems in which the
underlying features used by the neural network are
spatially correlated, scattered and non-trivial.

Generative models are proposed here as a
way of better understanding classification results.
These models play a crucial role in many appli-
cations and in many common tasks of data
science [21–28]. Moreover, there is a key chal-
lenge to learn disentangled (generative) represen-
tations where some variables of interest (such
as acquisition parameters, age, sex or pathology
in medical applications) would be independently
and explicitly encoded [29]. These representa-
tions can either be obtained with Variational
Auto-Encoders (VAEs) [30] or with generative
adversarial networks (GANs) [31].

Probabilistic generative models, such as VAEs
[30], define a joint probability distribution over the
data and over latent random variables. Very few
assumptions are generally made about the latent
variables of deep generative models, leading to
entangled representations.

Disentanglement can be achieved with VAEs
in the unsupervised case [8, 32], in the (semi)-
supervised case [9, 33, 34], and in the weakly-
supervised case [35]. In the supervised or semi-
supervised case, the factors of interest are explic-
itly labelled in all or in a part of the training set.
In the weakly-supervised case, only implicit infor-
mation about factors of interest is provided during
learning.

The semi-supervised case is of primary impor-
tance because better disentangled models can be
obtained under supervision [36]. In this case, the
latent representation is generally divided into two
parts: the non-interpretable part and the disentan-
gled part corresponding to variables that explicitly
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Fig. 1 From CT scans to hip bone meshes

model the factors of interest. In this context, sev-
eral patterns of conditional dependency structures
have been proposed [33, 34, 37].

In addition to VAE approaches, there is a sub-
stantial literature on image-to-image translation
between unpaired image data using GAN [38–41].
First, some methods try to map an image from
one domain (e.g. smiling) to another one (e.g. neu-
tral face). Among these methods, the best known
is CycleGAN [42]. This approach is able to pre-
serve key attributes of two different domains and
allows to transform an image from one domain
to another. Note that StarGAN [43] can perform
image-to-image translations for multiple domains.
Similar methods, inspired by dual learning, can
also be used [44–46] to map the domains. Other
GAN based approaches use architectures that are
more similar to the VAEs [47, 48]. As an exam-
ple, conditional GAN [48] allows to disentangle
the high level factors from the intrinsic features
of the face using two different encoders that com-
pute the latent representation and the attribute
information from the image.

3 From CT scans to meshes

In this section we assume that we have one 3D CT
scan Ik for each individual k. Computing a mesh
of the hip bone from a CT image (Fig. 1) is carried
out in six steps:

� (i) The scans are registered to a common
space using the groupwise registration algo-
rithm FROG [49], that provides a transforma-
tion field tk (for each k) that relates the common
space to the Ik’s image space.

� (ii) Each scan Ik is warped according to tk (so
as to obtain Ik in the common space), and a
template T is obtained by averaging the warped
images.

� (iii) The coxal bone is segmented and meshed
in T , thus providing a mesh M . The mesh is
composed of about 5000 vertices (we denote by
P the 3-D points associated with the mesh M).

� (iv) The points P are back-transformed in the
native space of each scan Ik using the inverse
transform t−1

k , providing for each scan Ik a
matrix Xk of size Np × 3 (Np is the number of
points). Each row of Xk is the 3-D coordinate
of one point. Note that the points are ordered
since the i-th row of each matrix is associated
with the same “anatomical” point.

� (v) A shape description invariant to position,
size and orientation denoted Pk is obtained
using a Procrustes alignment of Xk onto P
(for each Xk, we estimate a similarity trans-
formation, namely the combination of a rigid
transformation with an isotropic scaling trans-
form). A shape description invariant to position
and orientation is required since all subjects do
not have the same position during acquisition.
However, a description invariant to size is more
debatable.

� (vi) Since the point sets Pk and P are ordered,
the mesh Mk is straightforwardly derived from
M and Pk.

4 Disentangled Variational
Auto-Encoders for
classification and
reconstruction

4.1 Conditional dependency
structure

The proposed model is part of the family of
partially-specified models because an explicit
latent variable is defined (the sex of the sub-
ject) whereas the semantics of the other latent
variables is undefined. Several conditional depen-
dency structures can be defined. As an example,
[9] explicitly conditions the latent variables z on
age c, such that the conditional distribution p(z|c)
captures an age-specific prior on latent represen-
tations. We propose here to use a conditional
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Fig. 2 DVAE for sex determination. There are four main steps. 1. The distribution qϕ(y|x) (Eq. 5) is computed using the
neural network q0 (Eq. 6) that outputs the vector Py whose i-th element is equal to qϕ(y = i|x) (i = 1 or 2). Then, y is set to
the most likely label for testing, and is assumed to be known for training. 2. The parameters µ and log σ2 (both are vectors
of size L) of the distribution qϕ(z|x, y) (Eq. 4) are estimated using the neural networks q1 and q2 (Eq. 7). The networks
q1 and q2 share all their layers except the last one. Moreover, q0 shares with q1 (and q2) the four first convolution blocks
of the encoder. Note also that y is injected into the networks q1 and q2 through a concatenation layer located before the
two dense layers. Since one-hot encoding is used to model y, y is of dimension 2. This explains why the concatenation layer
takes as input a vector of dimension 512 and outputs a vector of size 514. 3. For learning, z is sampled from the distribution
qϕ(z|x, y) using the reparameterization trick (Eq. 8). For testing, z is set to µ. The latent representation of the input data is
composed of y and z and is of dimension L+2. 4. The reconstruction can be performed from the latent representation using
the decoder (Eq. 9). Note that the two latent representations (z, y = ”man”), (z, y = ”woman”) correspond to the “same”
individual but of opposite sex. Consequently, by setting y to the man (resp. woman) label in the latent representation, we
can reconstruct the original data as a man (resp. woman). This will enable us to transform a sample from a given class into
the “same” sample but of another class (see Sec. 4.3).

dependency structure, as presented in [33, 34],
which is suited to our problem.

We denote by x a sample (a mesh), by y its
class (male or female), and by z ∈ RL the other
latent variables. Note that the latent representa-
tion of x is the pair (y, z). We use the following
factorization for the generative process:

pθ(x, y, z) = pθ(x|y, z)p(y)p(z), (1)

where a weak prior is defined over z and y : p(z) =
N (z|0, I) and p(y) = 1

2 . pθ(x|y, z) is modelled as
a Gaussian distribution whose mean is given by a
neural network f with parameter θ that takes as
input y and z. We have:

pθ(x|y, z; θ) = N (x | f(y, z; θ), vI) ,
= N (x | x̂, vI) , (2)

where v > 0 is a hyperparameter and x̂ is the
reconstruction computed from y and z.

As usual in variational inference, the posterior
pθ(y, z|x) is approximated by qϕ(y, z|x). In order
to disentangle the label y from the other latent
variables z, we use the following factorization:

qϕ(y, z|x) = qϕ(y|x)qϕ(z|x, y). (3)

The distribution qϕ(z|x, y) shows that the esti-
mation of z requires the data x, but also the
label y. To understand why this is relevant, let us
consider a toy example where z is supposed to rep-
resent the size of the subject. If the sex label y is
well disentangled from z, z ought to be an intrin-
sic measure of a subject’s size. This means that
its estimation needs to regress out the influence
of the label y: indeed, a woman who is 160 cen-
timeters tall can be considered as average height
while a man of the same height can be consid-
ered as short, so that the value of z associated
with this woman has to be larger than the one
related to this man (even if they have both the
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same height). Consequently, in order to obtain a
disentangled representation, it seems appropriate
that z depends both on x and y.

The distribution qϕ(z|x, y) in Eq. 3 is defined
as a Gaussian distribution whose mean (resp.
covariance matrix) is given by a neural network q1
(resp. q2) with parameter ϕ1 (resp. ϕ2) that both
take as input x and y:

qϕ(z|x, y) = N (z; µ, σ2), (4)

where µ and log σ2 are vectors of size L (see Eq. 7
for details). Finally, the distribution qϕ(y|x) that
also appears in Eq. 3 is simply defined as:

qϕ(y|x) = Discrete(y|q0(x; ϕ0)), (5)

where q0 is a neural network with parameter ϕ0

that takes x as input. The output of this network
is a positive vector Py (Eq. 6) of size 2 summing to
1: the probability qϕ(y = i|x) is the i-th element
of q0(x; ϕ0) (i = 1 or 2).

The proposed approach can be summarized as
follows:

� If y is known, the neural network q0 is not
required. Otherwise, it acts like a classifier
such that the distribution qϕ(y|x) (Eq. 5) is
computed as follows:

Py = q0(x; ϕ0), (6)

and y is set to the most likely label.
� The latent variable z is computed from x and
y. Firstly, µ and log σ2 that appear in Eq. 4 are
computed such as:

µ = q1(x, y; ϕ1), log σ
2 = q2(x, y; ϕ2). (7)

Then, the latent variable z is set to µ for testing
new data whereas Eq. 8:

z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I), (8)

represents the reparameterization trick that is
used for learning (please see the next section).
Note that the latent representation of x contains
both the variables y and z.

� The reconstruction x̂ can be obtained from y
and z as follows:

x̂ = f(z, y; θ). (9)

The neural networks q0 (Eq. 6), q1 and q2 (Eq.
7) represent the encoder and f is the decoder (Eq.
9).

The proposed architecture is depicted in Fig. 2.
Networks q0, q1, q2 and f (Fig. 2) are defined using
a combination of the convolutions, max-pooling
(downsampling) and upsampling operators pre-
sented in [50]. Note that mesh convolution is
performed in the spectral domain with a kernel
parametrized as a Chebyshev polynomial of order
K (K is set to 6).

4.2 Parameter optimization

As usual for learning a VAE, the parameters of the
DVAE are set to maximize the Evidence Lower
BOund (ELBO) [30]. We can show that the term
qϕ(y|x) does not contribute to the loss function
because all labels y are known during training.
Thus, maximizing the ELBO does not allow the
estimation of ϕ0 (Eq. 6). Consequently, following
[33, 34], we add a classification loss α log qϕ(y|x)
to the ELBO term. The criterion writes:

Ez∼qϕ(z|x,y)

[
log

pθ (x, y, z)

qϕ(z | x, y)

]
+ α log qϕ(y|x).

(10)
Based on the conditional dependency structure

of the model, Eq. 10 can be simplified as:

Ez∼qϕ(z|x,y) [log(p(z))− log(qϕ(z|x, y))] +
Ez∼qϕ(z|x,y) [log(pθ(x|y, z))] +
log(p(y)) + α log qϕ(y|x).

(11)
The first term may be expressed as a Kull-

back–Leibler divergence (−KL((qϕ(z|x, y)||p(z)))
which can be computed analytically since the
encoder model and prior are Gaussian. The second
term is approximated by a Monte Carlo estimate:
we use the SGVB estimator and the reparam-
eterization trick [30] (Eq. 8). The third term
corresponds to the prior of the label y, that has
been set to 1/2. Finally, the last term is computed
by the neural network q0.

The loss function contains two hyperparam-
eters: α that weights the contribution of the
classification loss, and the variance v (Eq. 2),
which is used to compute the second term of Eq.
11. As in the VAE case, the variance v weights
the contribution of the mean squared error recon-
struction and special care is needed to set v. In the
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following, the two hyperparameters v and α are
estimated using cross-validation strategies (note
that the influence of the parameter α is limited
and could simply be set to 1).

4.3 DVAE for classification and
reconstruction

The proposed generative model can be used for
classification but it also offers the opportunity
to transform a sample from a given class to the
“same” sample but belonging to another class, by
modifying the value of the categorical variables y
in the latent representation. The reconstruction of
a male mesh (resp. female) as a female mesh (resp.
male) is carried out according to the following “sex
change” procedure:

� Step 1: The latent variable z is computed from
the input data x and its true label y using
Eq. 7 (z is set to µ). The latent representation
corresponds to variables z and y.

� Step 2: We change the value of y in the latent
representation, so that we obtain the latent rep-
resentation of the “same” individual but of the
opposite sex.

� Step 3: The reconstruction can be performed
with Eq. 9 (using the modified latent represen-
tation).

In order to test the consistency of the results,
we also developed a sex preservation procedure.
This is the same procedure as the sex change
procedure except that the value of y is not mod-
ified in the latent representation (Step 2 is not
performed).

Note that the computation of the latent vari-
able z requires knowledge of the sex of the mesh
under analysis since the true label y is required to
compute µ (Eq. 7). For testing, since the sex of
the mesh under analysis is not known, we have to
replace the true label by its most likely estimate
computed with q0.

However, for the reconstruction step (Eq. 9),
note that we can choose to reconstruct a subject
either as a man or as a woman by setting y in the
latent representation appropriately.

5 Experiments

Our database consists of 752 CT scans from the
University Hospital of Saint-Etienne, France, of

which 470 subjects are men and 282 subjects
are women. The men are on average 65.8 years
old with a standard deviation of 14.2 years and
the women are on average 65.6 years old with a
standard deviation of 14.6 years.

For each scan, a hip bone mesh is extracted as
explained in Sec. 3. Each point coordinate is nor-
malized so as to have zero-mean and unit-variance.
The means and standard deviations are computed
using the training dataset (see Section 5.1.2).

In addition to training a DVAE, we also train
a vanilla VAE whose architecture is the same as
that represented in Fig. 2 except that the label y
and the computation of Py (Eq. 6) are removed.
The usual criterion [30] is used for training the
VAE.

We also learn a classifier (denoted C) whose
architecture is derived from the one in Fig. 2 by
keeping only the layers that are useful for the com-
putation of Py (Eq. 6). C and q0 have the same
architecture but q0 is only a subpart of the DVAE
(q0 shares some layers with q1 and q2) whereas
C is an independent classifier. The binary cross
entropy loss is used for training C.

Finally, we use PyTorch for implementation.

5.1 Evaluation protocol

5.1.1 Hyperparameter setting

In the VAE case, the variance v is estimated auto-
matically during the training process with the
method proposed in [51]: v is computed for each
batch as the MSE loss.

Regarding the DVAE, several methods have
been tested without success to estimate v auto-
matically. This is why the parameter v as well
as the parameter α (Eq. 11) are set using cross-
validation strategies.

It has been observed that the size of the latent
space has limited influence on classification accu-
racy and on the disentanglement properties for
a large range of values of L (for L = 1 to 64).
However, using too small values of L leads to an
increase in the reconstruction error. L has been
set to 16 in all experiments. For a fair comparison,
the size of the latent space of the VAE has been
set to L+2=18.

Optimization of the parameters was done using
the Adam optimization algorithm with a batch
size of 16. During training, all models are trained
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for 600 epochs. We keep the same learning rate of
0.0006 for the first 200 epochs and then decay the
learning rate to 0.0003 for the next 200 epochs.
For the last 200 epochs, we set the learning rate
to 0.0001. Training time for DVAE is about 7.2
sec per epoch with a 2080 Ti graphics card. The
DVAE needs about 0.2 seconds to generate both
male and female hip bones during testing.

5.1.2 Nested-cross validation strategy

In order to estimate the ability of the models to
handle unseen data and to set the hyperparame-
ters α and v for the DVAE, we follow the nested
cross-validation strategy.

First, an (outer) stratified 5-fold cross-
validation strategy is used to assess the perfor-
mance of the models. At each iteration, all folds
except one are used as training data (it will be
denoted TR) and the remaining one is used as
testing data (TE). The three models (DVAE, C,
and VAE) are trained from TR and their perfor-
mances are evaluated on TE. Note that a score
can be computed for each fold. We can then derive
an average score and its standard deviation.

However, the DVAE learning process requires
the hyperparameters α and v to be defined. An
inner K-fold cross-validation could be applied at
each iteration of the outer cross-validation. How-
ever, this would require training a very large
number of models. To make the problem tractable,
we instead randomly divide the training set TR
into a validation set denoted V and a training set
T (20% and 80 %). Afterwards, several models
are trained from T based on different values for
the hyperparameters: a grid search is performed
for α and v (α and

√
v take resp. their value in

{0.5, 1, 2, 3, 4, 5} and in {0.7, 1, 1.3, 1.6, 1.9}). Once
all models have been trained, the set V is used
to select the model that provides the highest dis-
entanglement, that is, the one that leads to the
highest success rate for the sex change procedure
(see sec. 5.1.3). Then, a final model is trained from
TR based on the hyperparameters that have led
to obtain the selected model (note that TE is used
neither to estimate the parameters of the model
nor to estimate the hyperparameters).

5.1.3 Evaluation metrics

In the (semi)-supervised case, evaluating disen-
tanglement is often achieved by visualising the

reconstructions while modifying the value of a
latent variable of interest. In our specific case, this
can be easily achieved since the latent variable of
interest y is binary (a hip bone is either associ-
ated with a man or a woman). Consequently, the
model is tested on its ability to perform condi-
tional generation according to the sex label (Sec.
5.2.1 proposes quantitative results while Sec. 5.2.2
presents some visual examples). The model is also
tested for its ability to classify hip bones and to
reconstruct the original data.

For each fold, we compute four different met-
rics to evaluate the performance of the model:

� The classification accuracy (CA) obtained with
q0 (DVAE) or with classifier C.

� The opposite sex reconstruction success rate
(OSRSR): we reconstruct a male (resp. female)
as a female (resp. male) mesh using the sex
change procedure (Sec. 4.3). This procedure is
considered as successful if the transformed mesh
is classified as female (resp. male) using C. This
rate should be high if the sex label y has been
been properly disentangled from z.

� The same sex reconstruction success rate
(SSRSR): we reconstruct a male (resp. female)
as a male (resp. female) mesh using the sex
preservation procedure (Sec. 4.3). This proce-
dure is deemed as successful if the transformed
mesh is classified by classifier C as male (resp.
female).

� The reconstruction error (RE) in millime-
ters. The reconstruction obtained with the sex
preservation procedure is compared with the
initial mesh in the native space of the image Ik
(see Sec. 3). The mean of the euclidean distances
between each associated point is computed lead-
ing to a score for a given subject. This score is
then averaged over all subjects in the fold. Note
that obtaining the reconstruction in the space
of Ik requires the inversion of the normalization
step applied to each point coordinate (second
paragraph of Sec. 5) as well as the similarity
transformation (point (v) in Section 3).

Note that all metrics except CA are computed
using different reconstructions of the mesh under
analysis. In order to distinguish between classifi-
cation errors and reconstruction/disentanglement
errors, the true label is used to compute the latent
representation.
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Table 1 Results (mean and standard deviation) obtained with the DVAE approach. CA, OSRSR, SSRSR, and RE stand
resp. for classification accuracy, opposite sex reconstruction success rate, same sex reconstruction success rate, and
reconstruction error.

CA OSRSR SSRSR RE
99.59± 0.34% 99.10± 0.92% 100% 1.647mm± 0.098mm

Table 2 Comparison with previous works on sex determination. Note that previous works rely on manual estimation
(such as lengths, angles or landmark positions) while our approach is fully automatic.

Method individuals variables accuracy
CADOES [2] 256 40 (manual) 97 %
DSP [3, 4] 2040 17 (manual) > 99 %
Nikita et al. [5] 132 3 (manual) 97 %
Ours 752 5000 (autom.) > 99 %

5.2 Experimental performance
analysis

5.2.1 Quantitative results

The results obtained with the DVAE approach are
shown in Tab. 1. Regarding the classification accu-
racy, the DVAE classifier achieves a very high pre-
diction accuracy (99.59±0.34%). This corresponds
to a total of 3 misclassifications out of 752 (one
misclassification in 3 folds and zero in 2 folds). The
independent classifier C achieves similar results
since only three subjects are misclassified (these
are not the same subjects).

As a comparison, Tab. 2 gives sex predic-
tion accuracy for recent works that are based on
the manual positioning of a few landmarks. We
cannot claim that the proposed method provides
better results since all the methods should be
compared on the same database (which unfortu-
nately is not available). However, the proposed
method yields state-of-the-art classification results
while being free of any manual positioning of land-
marks. Moreover, the method is data-driven and
not guided by expert knowledge. It is also suited to
sex determination from other bones and, as shown
in Sec. 7.2, from bone fragments.

In terms of reconstruction error, the DVAE
performs similarly to a vanilla VAE, which obtains
a mean reconstruction error of 1.728 mm, even
if the selected values of v at each fold (DVAE)
are always larger than those estimated (for each
batch) with the method of [51] (VAE). The
selected values of v in the DVAE case are relatively
large because it has been observed that small

values of v lead to poor disentanglement proper-
ties. However, an increase in v did not increase
reconstruction error.

One could remark that the comparison of the
reconstruction errors may be unfair since the true
sex label is employed to perform the reconstruc-
tion in the DVAE case. However, the same result
is obtained when using the estimated label: there
are only 3 misclassified cases and using the true
label or the false one leads to reconstructions that
are mostly similar, except in some specific regions.

Finally, excellent results are obtained for the
opposite sex reconstruction success rate, and for
the same sex reconstruction success rate. The
reconstruction as a female (resp. male) mesh of
a male (resp. female) mesh is well-classified by C
in more than 99% of the cases (OSRSR). More-
over, the reconstruction as a male (resp. female)
mesh of a male (resp. female) mesh is always well-
classified by C in our experiments (SSRSR). Note
that the accuracy of the classifier C reaches only
97.17±1.05% when classifying data reconstructed
with the vanilla VAE (instead of 100% in the
DVAE case).

As noted previously, the comparison with the
VAE approach may be unfair since the true label
is used for reconstruction in the DVAE case. How-
ever, we can use a sex preservation procedure that
does not rely on the true label (the label can be
estimated by q0). In this case, when classifying the
reconstructions obtained by DVAE, the classifier
C reaches an accuracy of 99.59 ± 0.34%, which is
exactly the accuracy of q0 (see Tab. 1). Indeed,
classifying with C the reconstruction obtained
with the DVAE provides exactly the same results
than classifying the original mesh with q0. This
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Fig. 3 Local average distances. From left to right: orig-
inal meshes vs reconstructed meshes (lower distance is
better), original meshes vs reconstructed opposite sex
meshes, reconstructed meshes vs reconstructed opposite
sex meshes. Distances are in mm. See text for details.

clearly shows the consistency of the method. As an
example, if a male mesh is considered as a female
one by q0, the DVAE will reconstruct this male
mesh as a female one so that the classifier C will
be also wrong.

5.2.2 Qualitative results

In order to evaluate more precisely the disen-
tanglement properties of the model, each original
meshMk is compared with its reconstructed (same
sex) mesh or with its reconstructed opposite sex
mesh. Furthermore, the two reconstructions are
also compared together. Note that the two recon-
structed meshes are those computed in the previ-
ous section (the true label y is used to compute
z).

We start by analyzing average results. As in
Sec. 5.1.3 (please see the definition of RE), the
reconstructions (associated with Mk) are com-
puted in the native space of Ik. To compare two
(out of the three) meshes, we associate at each
vertex v of the template mesh M a real value rep-
resenting the distance between the two vertices v
of the meshes under analysis. These distances are
averaged across the different subjects of the test-
ing set. Each vertex of the template mesh therefore
receives a color representing the (local) average
distance.

These local average distances are represented
in Fig. 3 (left) when the original meshes are com-
pared with the same sex reconstructed meshes.
This comparison shows that the iliac crest is not
well reconstructed. This is mainly due to large
registration errors that can be observed for some
subjects in this region. This makes the problem
more difficult because the variability of the data
is increased.

As illustrated in Fig. 3 (middle) that repre-
sents the local average differences between the
original meshes and the opposite sex meshes, the

Fig. 4 Example of changing a male hip bone (blue) to a
female hip bone (red). Left: angle comparison: the subpubic
angle is larger for the female bone than for the male bone.
Right: the male obturator foramen (left) exhibits an oval
shape, while the female obturator foramen (right) exhibits
a triangular shape.

opposite sex reconstruction changes the geome-
try as expected. Moreover, the differences that
can be observed are consistent with expert knowl-
edge. As an example, the subpubic angle is known
to be larger for women, leading to the difference
observed in the pubic arch.

The two reconstructed meshes can be com-
pared (Fig. 3 (right)) in order to gain a deeper
understanding of the results. This is particularly
true for the iliac crest, which is not well recon-
structed in both cases. In the case of complete
disentanglement of the sex label, we expect this
area to be reconstructed similarly for both recon-
structions. This is because the iliac crest is known
to show little sexual dimorphism compared to
other areas of the hip bone. Even if Fig. 3 (right)
still exhibits differences in the iliac crest between
the two reconstructions, they remain low com-
pared to the original reconstruction errors (Fig. 3
(left)).

Finally, these results reinforce the idea that the
sex variable has been properly disentangled.

We can explore further by analyzing individ-
ual results. The analysis of the differences between
two meshes was carried out using “cine mode”
(rapidly switching between them) because the eye
is sensitive to movement. For the sake of simplic-
ity, the two meshes are here directly superimposed
to compare them (see Fig. 4 and 5).

When opposite sex reconstruction is successful,
the comparison of the opposite sex mesh with the
original mesh (or the reconstructed one) reveals
the significant anatomical differences between the
male and female hip bones, such as the subpubic
angle (Fig. 4, left) as well as the shape of the obtu-
rator foramen (Fig. 4, right), of the greater sciatic
notch, of the pelvic inlet and of the symphysis.
Note that it may sometimes happen that the two
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(a) (b) (c) (d)

Fig. 5 Examples of DVAE results. Original mesh (grey) vs mesh reconstructed as a female one (red). Original mesh (grey)
vs mesh reconstructed as a male one (blue). The original mesh of (b) is a female one while those of (a,c,d) are male meshes.

meshes do not exhibit all the expected differences,
but most of them are generally easily observable.

When opposite sex reconstruction is not suc-
cessful, the modification is globally consistent,
as some significant anatomical differences can be
observed, but some of them are sometimes hard
to see, or event not present.

6 Discussion: In what sense
does the method provide
understanding?

Predicting sex from a hip mesh is not an easy
task for a non-expert and the classification results
can be difficult to understand. In the proposed
approach, in addition to providing the class of the
mesh, its reconstructions as a man and as a woman
are also provided. When the original mesh is that
of a man (resp. woman), its reconstruction as a
man (resp. woman) is very similar to the origi-
nal mesh. Conversely, the comparison between the
original mesh and its reconstruction with oppo-
site sex exhibits differences in some specific areas

(while others remain unchanged). The compari-
son of these reconstructions with the original mesh
enables a non-expert to understand the choice of
the classifier, or at the very least to make their
own choice.

Fig.5(a) gives an illustrative example of the
results provided by DVAE. The reconstruction of
the mesh as a man is very similar to the origi-
nal mesh. On the contrary, the reconstruction as a
woman exhibits a wider subpic angle and a wider
pelvic inlet. Consequently, a non-expert can eas-
ily classify the mesh as a male (without using the
result of the classifier), or at least, understand why
this mesh can be considered as a male one.

It is then legitimate to ask what happens if
the label is not correctly estimated by q0: will the
proposed method justify a misclassification or will
it detect the mistake? This part should not be
considered as a failure case analysis. The purpose
of the proposed method is to provide relevant and
easily interpretable information so that the users
can form their own opinions. Consequently, if the
classifier is wrong but the information given by
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DVAE enables the user to question its decision,
this can certainly be considered a positive result.

Both DVAE and C misclassified 3 subjects, we
analyze them in detail here. The different recon-
structions relative to the misclassified meshes are
shown in Fig. 5(b,c,d) (note that y is provided by
q0 for the computation of z so as not to bias the
results). The 6 misclassified cases can be split into
three groups.

The first group is composed of 3 misclassified
subjects (one for C and two for DVAE). Fig. 5(c)
is an illustrative example of this group. It is a man
that has been misclassified by C. The reconstruc-
tion as a man is very similar to the original mesh
in the sex-specific regions, whereas the reconstruc-
tion as a woman exhibits some differences in these
regions. Consequently, the original mesh seems to
be a male mesh and the user may question the
choice of the classifier. Moreover, the iliac crest is
particularly poorly reconstructed in these 3 sub-
jects. The shape of this region may be responsible
for the misclassification.

The second group is composed of 2 misclassi-
fied subjects (one for C and DVAE). Fig.5(b) is
an illustrative example of this group. It represents
a woman that has been misclassified by DVAE.
When looking at the subpic angles, it seems to be
consistent: the reconstruction as a woman is very
similar to the original mesh in this area. How-
ever, the reconstruction of the pelvic inlet suggests
that this is a male mesh (the reconstruction as a
man is very similar to the original mesh in this
area). Thus, this mesh has both male and female
characteristics. This may explain why this sub-
ject is difficult to classify. In this case, the two
reconstructions enable the user to doubt the result
obtained by the classifier.

The last group is composed of one misclassi-
fied subject: this is a man (Fig. 5(d)) that has
been misclassified by DVAE. When it is recon-
structed as a woman, the subpubic angle is slightly
increased and the pelvic inlet is made wider, as
expected. When it is reconstructed as a man, we
expect the reconstruction to be similar to the
original mesh but the subpubic angle is slightly
decreased. Consequently, the subpubic angle of
this man seems to be larger than it should be. This
may explain why this subject has been misclas-
sified. However, a user could easily question the
results obtained by the classifier, because it seems

that the mesh exhibits more male characteristics
than female ones.

Finally, the comparison of the two reconstruc-
tions with the original mesh is a simple way to
understand the choice that was made by the clas-
sifier, or to doubt its choice (for the second group)
or to question it (for the first and last groups).

7 Reconstruction-based
classification: application to
missing data

7.1 Reconstruction-based
classification

As written in Sec. 6, the comparison of the
two reconstructed meshes provided by the DVAE
approach with the original mesh enables a non-
expert to form an informed opinion. In the same
way, one can wonder if the performance of an inde-
pendent classifier can be improved by feeding the
two reconstructed meshes obtained with DVAE to
the classifier.

To this end, the following paradigm has been
used: after having trained the DVAE, we train an
independent classifier denoted Crecon whose input
data are composed of two meshes: the first one
is the original mesh from which we subtract its
reconstruction as a man (provided by DVAE, z
is computed using the label estimated by q0) and
the second one is the original mesh from which
we subtract its reconstruction as a woman. The
classifier Crecon is identical to C except the first
layer that takes an input of size 4998x6 (we have
points in R6 because we model two meshes). In the
following, we denote this method DVAE+Crecon.

DVAE+Crecon achieves an accuracy of 100%
for each fold, even with meshes having both female
and male characteristics (Sec. 6). One possible rea-
son for these results is that the work of Crecon

is much simpler than the one of C. As an exam-
ple, let us consider the case of a male mesh. Its
reconstruction as a man is very similar to the orig-
inal mesh so that the first three components of
the mesh (we have points in R6) are close to zero.
On the contrary, the reconstruction as a woman
exhibits differences in some sex-specific regions so
that the last three components of the mesh are
close to zero except in the sex-specific regions.
Consequently, for a male mesh, all components are
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expected to be close to zero except the last three
components that lie in the sex-specific regions. For
a female mesh, all components are expected to
be close to zero except the three first components
that lie in the sex-specific regions. By highlight-
ing the regions that allow to distinguish male from
female hip bone, the input of Crecon is much easier
to analyze than the original mesh.

7.2 Application to missing data

Since all the classifiers C, Crecon and DVAE have
already achieved high accuracies, we propose here
to make the problem more difficult by introducing
missing data: vertices are deleted either on the
left-hand, right-hand, lower, upper, front or rear
side. The percentage of missing data is expressed
in terms of the percentage of the mesh size (in
the dimension where the data is removed). As an
example, when deleting data on the lower side, the
percentage of missing data is expressed in terms of
the percentage of the height of the mesh. A very
simple imputation strategy is used: missing values
are set to the value 0 (which is the mean at each
vertex).

Data augmentation is required during training
to achieve acceptable results: with a probability
of 0.6, the mesh is not modified. Otherwise, it is
augmented as follows. The side where the vertices
are set to 0 is chosen with a uniform distribution,
and the percentage of missing data is selected with
a uniform distribution in 0− 40%.

Four different methods are used for classifica-
tion:

1 The classifier C.
2 DVAE: note that the second term of the loss

function (Eq. 11) uses the original mesh (and
not the augmented one) since we want the
reconstruction to be similar to the original
mesh.

3 DVAE+ Crecon. DVAE is first trained as in
the second point. Then, during the learning of
Crecon, the two reconstructions of an augmented
mesh are computed using the DVAE (z is com-
puted using the label estimated by q0) and the
input of Crecon corresponds to the augmented
mesh from which we subtract its reconstruc-
tions. This means that Crecon is somehow fed
indirectly with augmented meshes during the
learning.

0 10 20 30 40 50 60 70 80
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Fig. 6 Classification accuracy obtained with different
methods in the presence of missing data. The x-axis corre-
sponds to the percentage of missing data (×100).

4 the last method denoted VAE+C consists in
classifying the reconstruction provided by the
VAE with C. The VAE is trained in a simi-
lar way as the DVAE. Since the VAE provides
a reconstruction without any missing data,
the classifier C is trained with non-augmented
meshes.

Classification accuracy is shown in Fig. 6 for a
large range of missing data.

As previously, we can note that DVAE and C
provide similar results. Even if 70% of the data is
missing, C and DVAE can still achieve an accuracy
of 90%.

We can also note that the two meth-
ods that use reconstructions (VAE+C and
DVAE+Crecon) are quite robust to missing data
but DVAE+Crecon performs always better than
other classification methods. This clearly high-
lights the benefit of feeding the classifier indirectly
with the two reconstructed meshes provided by
DVAE.

Finally, the fact that the proposed method is
able to achieve very good results in cases where
there is a high proportion of missing data seems to
indicate that it is able to take into account most
of the differences that exist between female and
male hip bones.

8 Comparison with saliency
maps

To compare our approach for the interpretation
of mesh classification with a standard method,
we have computed SMs for the classifiers C and
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Crecon (without missing data) with the method in
[6]. For a given input mesh, the importance wic at
each vertex vi is computed as follows:

wic = |∂p(y = 0|x)
∂xic

| = |∂p(y = 1|x)
∂xic

|, (12)

where xic (c =1, 2 or 3) represents either the x, y
or z coordinate.

Eq. 12 can be computed through back-
propagation. For each vertex, the 3 computed
importances (one for each coordinate c) are aggre-
gated using the max function: the SM at vertex
i is computed as maxc(wic). Instead of consider-
ing the derivative of p(y|x), it is also possible to
use the unnormalised score (the softmax layer is
not considered for the computation of the deriva-
tive). In this case, Eq. 12 no longer holds and a
SM is obtained for each class. Regardless of the
methods used or the aggregation function used,
the results were always very similar. Fig. 7 repre-
sents the mean of the SMs (across the subjects),
computed with Eq. 12 and the max aggregation
function.

It is difficult to understand how classifier C
makes its decision (Fig. 7, left), as the most rele-
vant vertices for the classification are distributed
over the entire hip bone (we could expect them to
lie specifically in regions that are known to differ
between men and women, but this is not the case).

The individual SMs were also extremely differ-
ent from one another, whereas one would expect
that they would all highlight sex-specific regions.
Finally, the results were neither intra-architecture
repeatable nor inter-architecture repeatable. We
suggest that SM may not be suitable for classifi-
cation problems in which the features that allow
distinguishing classes are spatially correlated and
scattered. Under these conditions, two classifiers
can achieve high accuracy results without hav-
ing the same decision boundaries, hence their
respective SMs will be different.

To illustrate this hypothesis, let us take a sim-
plified problem in which the hip bone is modeled
with four variables. To simulate the fact that the
hip bone is symmetrical, suppose that x1 is close
to −x2 and that x3 is close to −x4. The variables
x3 and x4 represent sex-specific regions (x3 ≥ 0 for
female hip bones and x3 ≤ 0 for male hip bones).
Then, let us consider the two following neural net-
works whose boundary equations are x3 − x4 = 0

Fig. 7 Mean SMs for C (left) and Crecon (center and
right). The SMs for Crecon are either averaged across the
female hip bones (center) or the male ones (right).

and x31x1<0 − x41x1≥0 + x1 + x2 = 0 (note that
x1 + x2 is likely to be close to 0 for hip bones),
where 1 is the indicator function. The two neural
networks are expected to achieve high accuracy.
However, only the SM of the first one is able to
highlight the regions of interest x3 and x4. The
SM of the last one is expected to highlight either
x3 or x4 according to the value of x1 as well as
two regions that are not sex-specific (x1 and x2).

For Crecon, the map is more consistent with
our expectations (Fig. 7, center and right) except
that a strong asymmetry is observed depending on
whether the processed hip bone is a female one or
a male one. That is why, the SMs are either aver-
aged across the female hip bones (Fig. 7, center)
or the male ones (Fig. 7, right). Moreover, con-
trary to the local average distances (Fig. 3), the
mean SMs highlight the pubic left tubercle, whose
shape is known to vary slightly according to the
sex (this is clearly visible for the mean SM associ-
ated with women, a little less for that associated
with men). It seems that the classifier focuses here
on a subtle difference between female and male hip
bones. Since the input of Crecon is partly fed with
the output of the DVAE, it can be estimated that
this small difference has been captured by DVAE.

Note also that similar mean SMs can
be obtained when measuring intra-architecture
repeatability and inter-architecture reproductibil-
ity. In all cases, the mean SMs associated with
men and women highlight a different side of the
hip bone and this asymmetry can be more or less
pronounced. Moreover, the side of the regions of
interest may be permuted: the mean SM of male
hip bones highlights the regions that are on the
right side (Fig. 7, right) but it can be the left side
for other tests.

We can conclude that the SMs obtained with
Crecon are more satisfactory than those obtained
with C. Our interpretation is that the input of
Crecon is much simpler to analyze since the sex-
specific regions have been highlighted by DVAE:
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all components that lie in regions that are not sex-
specific are close to 0.

As a final point, it is noteworthy that the
proposed method differs significantly from SMs.

First, as written in Sec. 1, they do not act at
the same level. The SM facilitates understanding
of the decision process related to a classification
method whereas the proposed approach highlights
the differences between the classes and thus pro-
vides information on the classification problem to
be solved.

Then, an intrinsic limitation of SMs is that
they do not provide any semantic meaning on
the highlighted regions. In our application, the
SMs can at best detect sex-specific regions, i.e.
regions that allow to distinguish between male
and female hip bones. In contrast, thanks to the
conditional generation according to the sex, the
proposed method not only provides a sex-specific
region detection but also offers the user the oppor-
tunity to observe the difference in shape of regions:
as an example, we clearly observe with the pro-
posed method that the subpic angle is larger for
women (Fig.4). Such an approach leads to a better
understanding of the class differences.

Moreover, the proposed method provides the
users with relevant information so that they can
form their own opinions. As an example, we have
seen in Sec. 6 that the comparison of the two
reconstructions enables us to show that some
meshes exhibit both male and female characteris-
tics.

Finally, contrary to SMs which is a generic
tool, the proposed approach is only suitable if
the label to estimate is a variable corresponding
to a source of variability (age, sex, outcomes of
genomic-biological-cognitive tests, diagnosis, mul-
ticenter variability), which are common situations
in medical imaging. As an example, it makes
sense in the proposed application to reconstruct
a male hip bone as a female one (or a diseased
organ into a healthy one) because the latent
space can be divided into two independent parts:
the non-interpretable part represents the intrinsic
(independent of sex) properties of the hip bone
and the disentangled part represents the sex label.

9 Conclusion

This paper has presented a novel paradigm for the
interpretation of classification by neural networks,

based on Disentangled VAE representations. The
approach provides reconstructions or data gen-
eration for each class, which paves the way for
a better understanding of class differences. The
approach has been illustrated through the inter-
pretation of sex determination from meshed hip
bones. It compares favorably with existing meth-
ods such as SMs.

The proposed paradigm is comprehensive and
suited to the disentanglement and classification
of other factors of general interest in medical
imaging, such as age, pathology or acquisition
parameters. Moreover, there are some cases where
some features can be associated with high-level
factors. As an example, features related to the
disease label may be its severity, and more gen-
erally characteristics that model how the disease
has transformed the disease-free sample. Note that
studies [52, 53] have shown the benefit of model-
ing both the high-level factors and their related
features to disentangle the high-level factors.

Future directions of this work include the mod-
eling of these features and the comparison of
the proposed approach with generative adversar-
ial networks that also can achieve disentanglement
in a supervised setting. Moreover, learning the
significant differences between the classes (at the
population level) during training is another per-
spective that would help to determine if the
differences observed for a particular sample under
classification are related to opposite sex recon-
struction or if they stem from other reasons such
as registration inaccuracy. This may further help
the analysis of the results.

Data availability
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[4] Br̊užek, J., Santos, F., Dutailly, B., Murail,
P., Cunha, E.: Validation and reliability of
the sex estimation of the human os coxae
using freely available DSP2 software for
bioarchaeology and forensic anthropology.
American Journal of Physical Anthropology
164(2), 440–449 (2017)

[5] Nikita, E., Nikitas, P.: Sex estimation: a com-
parison of techniques based on binary logistic,
probit and cumulative probit regression, lin-
ear and quadratic discriminant analysis, neu-
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