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†Université de Technologie de Troyes, Laboratoire Informatique et Société Numérique, 10004 Troyes, France
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Abstract—High intensity transient signals (HITS) can be de-
tected using transcranial Doppler ultrasound monitoring to help
stroke prevention. The various types of HITS are by nature
imbalanced: solid emboli are rare events, compared to artifacts
or gaseous emboli. Therefore, when training deep models on
these data, one have to take into account the class imbalance.
In this work, we propose a deep embedded clustering (DEC)
based regularization technique, DEC-R to handle imbalanced
datasets. Our proposed method decompose a classification model
into an encoder and a classifier, with DEC-R applied to the
former during supervised training. We validate our method on
four synthetic datasets and one HITS datasets. The results show
that our approach is robust against imbalanced datasets, allowing
to increase the classification performances of different models on
both, imbalanced (maximum imbalance ratio of 20) and balanced
datasets. We achieve an increase of 4.86% and 1.27% in terms
of Matthews correlation coefficient on two imbalanced datasets,
a synthetic dataset (of 3D points) and a HITS clinical dataset,
respectively. Our code can be found in GitHub12.

Index Terms—Deep Regularization, Imbalanced Data, Embed-
ded Clustering, Emboli Classification, Transcranial Doppler

I. INTRODUCTION

Stroke is a large public health problem as it is one of the
leading cause of disability and death in the world [1]. Cerebral
emboli (CE) can be associated to the risk of ischemic stroke
[2] as they can block a cerebral artery. Therefore, its detection
is crucial to help clinicians to prevent stroke.

Moreover, as CE are rare events, a long-duration monitoring
is necessary to be able to detect them. To do this, transcranial
Doppler ultrasound can be used to monitor the cerebral blood
flow over long periods of time. CE are then detected using
high intensity transient signals (HITS) which are potential
solid or gaseous emboli. What is more, a portable transcranial
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Doppler can be used to allow longer recordings in ambulatory
patients. The two main challenges with this technique are that
(1) portable TCD is more prone to artifacts, and (2) the set of
obtained HITS is imbalanced, the majority being artifacts and
gaseous emboli, whereas the minority are solid emboli.

Furthermore, since the early 2000s, several works have used
signal processing and machine learning techniques to detect
and classify CE. Signal processing techniques mainly focus
on frequency-based approaches using Fourier or wavelet trans-
forms, often combined with machine learning techniques such
as support vector machines, random forest, naive Bayes, or
fuzzy-rules based classifiers [3]–[7]. Deep learning techniques
often use time-frequency representations (TFRs) combined
with convolutional neural networks (CNN) [8]–[10]. More re-
cent work have exploited both TFRs and raw signals to classify
CE using CNNs and Transformers models [11]. Although both
types of methods have reached great performances, to our
knowledge, few works use portable TCD data [7], [11], or
take into account gaseous emboli for classification [9]–[11].
Moreover, none of these works directly handle the imbalance
in the used datasets. On the other hand, deep embedded clus-
tering (DEC) [12] has proven to be effective for unsupervised
classification and relatively robust against imbalanced datasets.
Therefore, it has been studied in biomedical applications [13]–
[15] and adapted to semi-supervised learning contexts [16] for
classification and segmentation [17].

In this work, we propose a regularization term based on
DEC allowing to partially handle imbalanced datasets while
improving the generalization capability of the trained models.
Indeed, as shown in [12], DEC is fairly robust against cluster
imbalance in an unsupervised context. In contrast, we propose
to adapt DEC to a supervised learning context. Therefore,
we propose to apply DEC to the encoder’s latent space of a
supervised learning model. This unsupervised clustering task
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is done in parallel with the supervised classification task. Thus,
any supervised learning can be regularized by our approach.

To summarize, our contributions are the following:
• Proposition of DEC-R, a DEC based regularization term

adapting it for a supervised learning context.
• Proposition of DEC-R as a new method to handle imbal-

anced dataset in a supervised learning context, without
the use of the label information (label noise robustness).

• Extensive evaluation using different datasets and classifi-
cation models.

We validate our proposed approach on five datasets, four
3D synthetic datasets and one HITS datasets. The results show
that our proposed method allows improving the classification
performances of different types of models trained on several
imbalanced and balanced datasets (maximum imbalance ratio
of 20).

The rest of the paper is structured as follows. In section II
we present our regularization DEC-R for supervised learning
classification. In sections III and IV we present the used
datasets in the different experiments as well as their results.
Finally, in section V we conclude and present the guidelines
of our future work.

II. METHOD

The global pipeline of our method can be found in figure 1.
We decompose our classification model into an encoder and
a classifier. We handle the problem as a multitask learning
problem where the encoder latent’s space is used for both
unsupervised clustering and supervised classification.

Fig. 1. Pipeline of the proposed method. The DEC-R regularization is applied
to the encoder latent’s space in parallel to the classification task.

A. Preliminaries

1) Deep embedded clustering: Let us suppose that we have
a labeled dataset (X1, y1), . . . , (XN , yN ), composed of N
labeled samples distributed in K classes, where the samples
are X1, . . . , XN and the labels are y1, ..., yN . Let us suppose
that we have a classification model M = C ◦ E composed of
an encoder E and a classifier C. DEC [12] does clustering on
the latent space of E by using the embedded representations
E(X1), . . . , EN = E(XN ) of the input samples.

We denote as c1, . . . , cK the centroids of the different
clusters, which are initialized using k-means. Note that, as we

are in a supervised learning context, we choose the number of
centroids to be equal to the number of classes. We can now
define, for all i ∈ [1, N ] and j ∈ [1,K], the soft assignments
qij (interpreted as the probability to assign sample E(Xi) to
the cluster of centroid cj) using the Student’s t-distribution:

∀i ∈ [1, N ],∀j ∈ [1,K], qij =

∑K
p=1(1 +

||E(Xi)−cp||2
α )

α+1
2

(1 +
||E(Xi)−cj ||2

α )
α+1
2

(1)
where α is the degrees of freedom of the Student’s t-

distribution, fixed to α = 1 for all the experiments presented
in this work (as in [12]). We denote as Q the predicted labels’
distribution obtained by the qij .

Moreover, in order to train the encoder model and the
centroids, a target distribution P is introduced in [12], defined
as follows:

∀i ∈ [1, N, j ∈ [1,K], pij =

q2ij
fj∑K

p=1

q2ip
fp

(2)

where fj =
∑K

p=1 qjp is the soft frequency of cluster j. The
DEC module is then optimized using the Kullback-Leibler
(KL) divergence between the target distribution P and the
predicted labels’ distribution Q:

LDEC = KL(P ||Q) =

N∑
i=1

K∑
j=1

pij × log(
pij
qij

) (3)

2) Supervised classification loss: Our main objective is to
do classification, so, in parallel to the unsupervised clustering
task, we train a classifier in a supervised manner using the
Cross-Entropy loss, LCE , using the encodings E(X1), . . . ,
E(XN ) and their respective labels are y1, ..., yN .

LCE(C) =
1

N
×

N∑
i=1

K∑
j=1

yij × log(ỹij) (4)

where yij is the jth component of yi corresponding to
the true probability that sample E(Xi) is of class j, and
ỹij = C(E(Xi))j is the jth component of ỹi = C(E(Xi))
corresponding to the predicted probability that sample E(Xi)
is of class j.

B. Proposed approach
1) Deep embedded clustering regularization (DEC-R) loss

for a supervised learning context: In the original paper [12],
DEC was applied to pre-trained unsupervised models. In our
context, DEC-R adapts DEC to supervised models in an end-
to-end manner. To do this, we introduce a hyperparameter einit
corresponding to the epoch at which DEC is activated. This
means that the proposed DEC regularization is only applied for
all epochs greater than einit. Hence, the DEC-R unsupervised
loss is denoted here as LDEC−R(E , einit). In short, from
epoch einit, the centroids c1, . . . , cK of the K clusters are
computed and updated over the iterations thanks to gradient
descent on LDEC−R. In this way, the computation of the
centroids also has an influence on the encoder’s parameters.



2) Final loss: The final loss that we used is the combina-
tion of LCE(C) and LDEC−R(E), with a hyperparameter γ
corresponding to the importance of the deep clustering task:

L = LCE(C) + γ × LDEC−R(E , einit). (5)

Both terms of the final loss depend on the parameters of
the E as LCE uses the encoded representations of the input
samples. The main difference between the two terms is that,
LDEC−R(E , einit) takes into account the centroids c1, ...,
cK , whereas LCE(C) takes into account the classification
predictions ỹ1, ..., ỹN .

III. DATASETS

A. HITS dataset

The HITS dataset is composed of 8685 HITS (696 solid
emboli, 1 002 gaseous emboli, 6 987 artifacts) extracted from
TCD recordings (30 to 180 minutes), performed on 52 subjects
(20 men, 25 women, and 6 unknown; median age 68.5, range
21 to 91, computed with the available information) coming
from 10 different centers. The recordings were obtained using
two Atys Medical devices, the TCD-X Holter and the WAKIe
R3, with a 1.5-2.0 MHz robotized probe. Moreover, for each
HITS sample, a TFR was extracted, following [11]. Thus,
a HITS sample is composed of a raw signal and its TFR.
For more details about the acquisition and pre-processing
parameters, we invite the reader to refer to [11].

Last, we split the dataset according to subjects into two
subsets, one for training, composed of 84% of the samples,
and one for testing, composed of 16% of the samples.

B. Synthetic datasets

In an attempt to study the robustness of DEC-R against
imbalanced datasets, we propose to use four synthetic datasets,
DSB , DSI , DNB , DNI , with controlled structures. Each
dataset is composed of three different clusters of 3D points,
C1, C2, and C3. We denote as Nk the number of samples in the
kth cluster. Moreover, the points of Ck are defined as follows:

∀x ∈ Ck,x ∼ N (µk,Σk)

where µk = µk × 1 is the mean vector (center of the cluster)
with 1 = [1, 1, 1], and Σk = σk × I3 is the covariance matrix,
with I3 ∈ R3 is the identity matrix. Using this, we create four
different datasets with the following characteristics:

• DSB : linearly separable and balanced dataset with
(µ1, σ1) = (−2, 0.5), (µ2, σ2) = (0, 0.5), (µ3, σ3) =
(2, 0.5), and N1 = N2 = N3 = 500.

• DSI : linearly separable and imbalanced dataset. Same as
DSB but with N1 = 1000, N2 = 200, and N3 = 4000.

• DNB : nonlinearly separable and balanced dataset with
(µ1, σ1) = (−1, 0.5), (µ2, σ2) = (0, 0.45), (µ3, σ3) =
(2.5, 0.5), and N1 = N2 = N3 = 500.

• DNI : nonlinearly separable and imbalanced dataset.
Same as DNB but with N1 = 1000, N2 = 200, and
N3 = 4000.

Even if these datasets are multi-class, we use the binary
classification term nonlinearly separable in the sens that at

least two classes are nonlinearly separable (in DNB and DNI ,
there is an overlap between C1 and C2).

What is more, the synthetic dataset DNI was designed to
have two important characteristics of the HITS dataset: (1)
imbalanced classes, and (2) two nonlinearly separable classes.
Indeed, as mentioned in subsection III-A, the HITS dataset is
by nature imbalanced, with the majority class (artifact), being
linearly separable with respect to the two other classes. On
the contrary, the minority class (solid emboli class), overlap
with the gaseous emboli class (nonlinearly separable), which
has twice more samples.

Last, for evaluation, we did a 80/20% train/test split.

IV. EXPERIMENTS AND ANALYSIS

We conduct different experiments on the four synthetic
datasets and the HITS dataset. We evaluate all the experiments
using the Mathew Correlation Coefficients (MCC) and the
F1-score. Moreover, all the models were trained with Adam
optimizer with a batch size of 32, and all the experiments
were repeated 10 times. The reported metrics correspond to
the median and mean absolute deviation over the repetitions.

A. Experiment 1: Influence of DEC-R hyperparameters

The objective of this experiment is to study the influence
of the two hyperparameters, einit and γ. To do this, we
trained a simple classification model using only DNI , and
we tried different combinations of the two hyperparameters:
einit ∈ [0, 1, 5, 10, 20,

nepochs

2 ] (with nepochs the total number
of training epochs) and γ ∈ [10, 1, 0.1, 0.01, 0.001]. The used
model is composed of an encoder with one fully connected
(FC) linear layer followed by a softplus activation function.
Then, a FC layer is applied followed by a softmax function to
do classification. The training parameters were the same for all
the combinations of γ and einit: 50 epochs and a learning rate
of 0.05. The results of this experiment are given in figure 2.

Fig. 2. Experiment 1: influence of the hyperparameters γ and einit on the
classification performance (MCC) of the trained model in DNI . The blue zone
corresponds to the best choice of hyperparameters used for all the synthetic
datasets in experiment 2.

First, for a fixed value of einit, decreasing the value of γ
globally reduces the classification performances. Conversely,
when γ increases, DEC-R term becomes stronger, giving a
more clustered and separable latent space. Secondly, for a fixed



TABLE I
EXPERIMENT 1: RESULTS OF THE EVALUATION OF DEC-R ON SYNTHETIC

DATASETS (DSB , DSI , DNB , AND DNI ).

Dataset DEC-R MCC F1-Score

DSB
No 100± 0 100± 0
Yes 100± 0 100± 0

DSI
No 89.65± 2.37 95.62± 0.91
Yes 94.51± 2.09 97.88± 0.77

DNB
No 96.99± 0.51 98.0± 0.33
Yes 96.25± 0.74 97.50± 0.50

DNI
No 91.74± 1.98 96.59± 0.77
Yes 93.38± 0.9 97.60± 0.38

value of γ, increasing the value of einit globally increases the
classification performances (the original DEC was designed
to be used with pre-trained models). Thirdly, we can see that
the classification performances obtained with einit = 0 are
globally smaller compared to the other values of einit. This is
because DEC-R is initialized with k-means, and for einit = 0,
the latent space where DEC-R is applied does not have a rich
structure, so the initialized centroids are not optimal, leading to
poor results. Based on these remarks, we recommend choosing
the hyperparameters, γ and einit as follows. First, choose
einit starting from low values for a fixed small γ value. This
allows measuring the impact of DEC-R without an important
degradation of the classification performance. Then, choose γ
by gradually increasing it for the previously chosen einit.

B. Experiment 2: Robustness of DEC-R against imbalanced
datasets

The objective of this experiment is to study the robustness
of DEC-R regularization in a controlled environment using
synthetic datasets. Therefore, we used DSB , DSI , DNB , and
DNI to train the same classification model of experiment 1
with and without DEC-R. Furthermore, following the rec-
ommendations of our hyperparameter study in experiment 1
(IV-A), we obtained the following values: γ = 1 and einit = 5
for DSB and DNI ; γ = 10 and einit = 5 for DSI ; γ = 0.5
and einit = 1 for DNB . Moreover, on DSB , DNI , and DSI ,
we trained the models during 50 epochs with a learning rate
of 0.05 for the two first datasets and 0.005 for the last one.
Last, for DNB the model was trained during 100 epochs with
a learning rate of 0.01. All the models used a weight decay
of 10−7, and the results can be found in table I.

For both imbalanced datasets, DSI and DNI , the regularized
model outperformed the unregularized one by a margin of
4.86% and 1.64% in terms of MCC respectively. Indeed, the
DEC-R regularized models tend to produce more compact
clusters, allowing a better separability when doing classifica-
tion.

Additionally, we observe that regularizing with DEC-R does
not reduce significantly the classification performances in any
dataset, while often reducing the variability, thus giving more
stable models.

C. Experiment 3: Application to cerebral emboli classification

The objective of this experiment is twowise: (1) apply
our proposed method to a real HITS imbalanced dataset for
CE classification, and (2) compare our proposed method to
other commonly used methods for imbalanced classification,
namely undersampling (to reach the number of samples of
the minority class) and class weights [18]. Therefore, we
applied our method to two different models of [11]: (1) a
2D CNN model taking as input the TFR, and (2) a 1D
CNN-Transformer taking as input the raw signal. Hereafter
we list the small changes that we did for the 1D CNN-
Transformer model compared to the original work in [11]:
last 1D convolutional layer is applied 4 times, 16 attention
heads (per multi-head attention), 4 Transformer encoder layers,
a Transformer intermediate hidden dimension of 64, and a
dimension of 16 for the projected representation used for final
classification. Additionally, to test the resistance of DEC-R to
noisy-labels, we added symmetric noise to the labels with a
noise rate of 20%. Furthermore, the 2D CNN models were
trained with a weight decay of 10−4, and a learning rate
of 10−3, whereas the 1D CNN-Transformers used a weight
decay of 10−5 and a learning rate of 0.1 when undersampling
was applied and 0.04 when not. The DEC-R parameters can
be found in table II. Last, all models were trained during
75 epochs expect for the 1D CNN-Transformer models with
undersampling (required 100 epochs). We computed the MCC
and F1-score over the last 5 epochs, and results can be found
in table III.

First, we can observe that, with respect to undersampling,
DEC-R allows increasing the performances of the models, with
up to 2.85% in terms of MCC. Indeed, DEC-R allows not only
to use all the available samples (compared to undersampling),
but it also enforces clustering3. Moreover, for the 1D CNN-
Transformer model, DEC-R alone outperforms all the other
methods. Nevertheless, for the 2D CNN model, class weights
(combined to DEC-R) improves the results, but it stays below
the 1D CNN-Transformer. However, contrary to class weights,
our method does not depend on the labels of the samples,
which makes it more robust against noisy-labeled datasets as
the results in table IV show it.

Finally, for both models, the best performing methods are
the ones using DEC-R (with class weights for the 2D CNN
model and without for the 1D CNN-Transformer), with an
increase in MCC up to 2.02% with respect to baselines where
no imbalance classification method is used.

V. CONCLUSION

In this work, we proposed DEC-R, a regularization for su-
pervised learning models based on deep embedded clustering.
Our method decomposes a classification model into an encoder
and a classifier, with an unsupervised DEC regularization
applied to the encoder while doing supervised training of the
entire model. Our experiments show that, on both synthetic

3We refer the reader to the GitHub associated to our work for more
experimental details assessing this point.



TABLE II
EXPERIMENT 3: DEC-R PARAMETERS.

Model Undersampling Class
γ einitWeights

2D CNN
Yes - 0.1 10

No No 0.1 1
Yes 0.01 1

1D CNN-Trans.
Yes - 1 70

No No 0.0001 1
Yes 1 1

TABLE III
EXPERIMENT 3: RESULTS OF THE EVALUATION OF DEC-R ON THE HITS

DATASET IN %. No MEANS THAT NO METHOD IS USED. US AND CW
STAND FOR UNDERSAMPLING AND CLASS WEIGHTS, RESPECTIVELY

Model Imbalance MCC F1-ScoreMethod

2D CNN

No 81.13± 1.72 85.04± 1.10
US 78.36± 2.17 83.67± 1.50
CW 83 .03 ± 1 .76 86 .34 ± 1 .26

DEC-R 81.21± 1.81 84.69± 1.43
US+DEC-R 78.95± 1.55 83.91± 0.96
CW+DEC-R 83.15± 1.20 86.41± 0.88

1D CNN-Trans.

No 86.23± 0.94 89.31± 0.58
US 84.95± 1.51 88.47± 0.89
CW 86.52± 1.11 89.47± 0.73

DEC-R 87.50± 1.19 89.87± 0.56
US+DEC-R 85.07± 1.04 88.39± 0.67
CW+DEC-R 86 .98 ± 1 .05 89 .76 ± 0 .67

data and real TCD data, a DEC-R regularization on the
encoder allows facing class imbalance with a more clustered
latent space: it improves the classification performances of
different classification models (DNN, CNN, and Transformers)
in imbalanced and balanced datasets, with inputs of different
natures, specially when noise is present in the labels. In future
work, we plan to apply DEC-R to multi-feature models.
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