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Abstract

We propose a semi-supervised learning approach to annotate a dataset with reduced requirements for manual annota-
tion and with controlled annotation error. The method is based on feature-space projection and label propagation using
local quality metrics. First, an auto-encoder extracts the features of the samples in an unsupervised manner. Then,
the extracted features are projected by a t-distributed stochastic neighbor embedding algorithm into a two-dimensional
(2D) space. A selection of the best 2D projection is introduced based on the silhouette score. The expert annotator uses
the obtained 2D representation to manually label samples. Finally, the labels of the labeled samples are propagated to
the unlabeled samples using a K-nearest neighbor strategy and local quality metrics. We compare our method against
semi-supervised optimum-path forest and K-nearest neighbor label propagation (without considering local quality
metrics). Our method achieves state-of-the-art results on three different datasets by labeling more than 96% of the
samples with an annotation error of from 7% to 17%. Additionally, our method allows to control the trade-off between
annotation error and number of labeled samples. Moreover, we combine our method with robust loss functions to
compensate for the label noise introduced by automatic label propagation. Our method allows to achieve similar, and
even better, classification performances compared to those obtained using a fully manually labeled dataset, with up to
6%.

Keywords:
2000 MSC: 41A05, 41A10, 65D05, 65D17 Semi-supervised learning, Emboli characterization, Stroke, Data
annotation, Noisy labels

1. Introduction

According to the World Health Organization, stroke is
one of the leading causes of disability worldwide (John-
son et al., 2016), and cerebral emboli have been related to
the risk of stroke (Wallace et al., 2015). Cerebral emboli
can be generated by several medical procedures, such as
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transcatheter aortic valve implantation (Aggarwal et al.,
2018), cerebral angiography (Markus et al., 1993), and
patent foramen ovale tests (Serena et al., 2010), and they
can occur as a result of a variety of conditions, such as
carotid artery stenosis (Rosenkranz et al., 2006).

Several techniques can be used to detect emboli (Wal-
lace et al., 2015), such as magnetic resonance imaging
and computed tomography. The main drawbacks of these
techniques are that they are invasive and expensive, and
they do not allow long-duration monitoring of the cerebral
blood flow. A well-suited alternative to solve these draw-
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backs is transcranial Doppler (TCD) monitoring. TCD
monitoring is a non-invasive and relatively cheap ultra-
sound technique that allows the cerebral blood flow to be
monitored over long periods of time (from a few minutes,
to a few hours). During the monitoring, high-intensity
transient signals (HITS) can be detected that correspond
to emboli or artifacts. In this paper we work with TCD
data that was acquired with a portable robotic probe that
is worn by the patient while allowing free movement of
the patient and long-duration monitoring without loss of
signal.

Moreover, the HITS can be used to discriminate be-
tween emboli (solid or gaseous) and artifacts (see Fig. 1).
Many studies have tried to detect emboli using TCD
data through classical signal-processing techniques such
as Fourier transforms and wavelet transforms (Markus
and Punter, 2005; Gencer et al., 2013; Serbes and Aydin,
2014; Karahoca and Tunga, 2015; Sombune et al., 2016),
and also through machine-learning techniques such as
support vector machine (SVM) algorithms (Guépié et al.,
2017; Guepie et al., 2019) and deep-learning techniques
such as convolutional neural networks (CNNs) (Sombune
et al., 2017; Tafsast et al., 2018). These studies have
shown impressive results in cerebral emboli detection and
its discrimination from artifacts, although only Guepié et
al. (Guépié et al., 2017; Guepie et al., 2019) used portable
TCD data. This is a key point, because portable TCD
monitors are more prone to artifacts, making the detection
and discrimination task more complex than with conven-
tional TCD data.

Furthermore, one of the main difficulties in real-world
deep learning applications is that data acquisition and
annotation is costly. More specifically, data annotation
can be expensive, time-consuming and often requires ex-
pert knowledge (this is particularly true in the medical
field). Some semi-supervised learning approaches have
been tried that have tackled this problem through label
propagation (Zhu and Ghahramani, 2002; Benato et al.,
2018, 2021), generative models (Kingma et al., 2014),
and self-training (Rosenberg et al., 2005). Only a few re-
ports in the literature have applied these methods to TCD
data (Vindas et al., 2021). Nevertheless, these approaches
work in a high-dimensional space or project the data into
a lower-dimensional space, without taking into account
the local quality of the projected points to guide the label
propagation. Additionally, even if automatic data anno-

tation methods introduce some errors in the labels, not
many studies have taken this into account when they have
trained their models.

In this study, we propose a framework for semi-
automatic data annotation (label propagation) and classi-
fication using semi-automatically labeled datasets and we
evaluated it on three tasks: emboli classification, organ
classification and digit classification. Furthermore, our
method relies on three assumptions (structure assumption
(Chapelle et al., 2009), the preservation of the local struc-
ture during projection and the annotation space coverage)
and combines: (1) representation learning and dimension-
ality reduction techniques; (2) projection quality evalua-
tion; and (3) noise-tolerant loss functions. These concepts
are detailed in the the following sections.

1.1. Related Work
In this subsection, we present four domains that are re-

lated to our work: representation learning and dimension-
ality reduction; semi-supervised learning; noisy-labels
learning; and semi-automatic data annotation.

Representation learning, dimensionality reduction, and
their qualities. Auto-encoders (Tschannen et al., 2018)
have been widely used in several problems to extract fea-
tures from high-dimensional data (Doersch et al., 2015;
Chen et al., 2017), and even for anomaly detection (Zhou
and Paffenroth, 2017). Representation learning by deep
neural networks is close to human perception (Zhang
et al., 2018); however, it remains very high dimension-
ally. A commonly used technique is to project the learned
representations into a lower dimensional space that can
be visualized using some dimensionality reduction tech-
niques (Packer et al., 2013), such as t-distributed stochas-
tic neighbor embedding (t-SNE) (Maaten and Hinton,
2008), principal component analysis (PCA) (Jolliffe and
Cadima, 2016), isometric feature mapping (ISOMAP)
(Tenenbaum, 2000), and uniform manifold approxima-
tion and projection (UMAP) (McInnes et al., 2020).
Moreover, it has been shown that working on lower di-
mensional spaces facilitates manual annotation and la-
bel propagation (Benato et al., 2018, 2021). Thus, these
lower dimensional spaces can then be used for interactive
and semi-automatic data annotation (Benato et al., 2018,
2021; Vindas et al., 2021). Furthermore, in the context
of data annotation, to reduce annotation errors and have
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Figure 1: Examples of spectrograms of high-intensity transient signals.
Top row: solid emboli; middle row: gaseous emboli; bottom row: arti-
facts. Solid emboli usually have lower intensities and shorter durations
than gaseous emboli, which are usually ’v’-shaped with higher intensi-
ties than solid emboli (they have higher energies). Artifacts are usually
symmetric.

reliable projections, it is important to be able to evaluate
the quality of the final projection using global and local
projection quality evaluation metrics (Lueks et al., 2011).

Semi-supervised learning and label propagation. Data
annotation can be a time consuming and expensive task,
particularly for medical applications. This can lead to
partially annotated datasets that can be difficult to han-
dle. Semi-supervised learning methods are good candi-
dates to exploit both labeled and unlabeled data. Indeed,
while it is possible to use only the labeled data, the ra-
tionale behind semi-supervised learning is that unlabeled

data can bring important information to the models de-
veloped. Different methods have been proposed to prop-
agate the labels from labeled samples to unlabeled sam-
ples (these methods often make structure assumptions1

(Chapelle et al., 2009)): from label propagation (Zhu and
Ghahramani, 2002), to generative models (Kingma et al.,
2014) and self-training (Rosenberg et al., 2005). La-
bel propagation (Zhu and Ghahramani, 2002) gives the
same label to close samples using a K-nearest neigh-
bor (KNN) strategy; generative models (Kingma et al.,
2014) treat the labels of the unlabeled samples as latent
variables that can be generated using a learned distribu-
tion; and self-training (Rosenberg et al., 2005) trains a
model several times with a dataset that is continuously
improved and annotated over the iterations through the
trained model of the previous iteration. A lot of these
methods use machine-learning and deep-learning algo-
rithms, plus some embedding representations as regular-
ization to exploit both the labeled and unlabeled samples
(e.g., Laplacian SVMs (Belkin et al., 2006; Sindhwani
et al., 2005), deep semi-supervised embedding (Weston
et al., 2008)). Other methods, such as optimum-path for-
est semi-supervised (OPF-semi) (Amorim et al., 2014),
propagate labels using a graph structure: the training set
(which is composed of labeled and unlabeled samples) is
transformed into a graph, then representers of the differ-
ent classes are computed, and finally, the unlabeled sam-
ples are annotated by assigning to them the label of their
closest labeled representer. However, to the best of our
knowledge, none of these methods take into account the
quality of the learned embedding.

Noisy-labels learning and noise-tolerant loss functions.
Another aspect encountered with semi-automatic anno-
tation (and more generally, with annotation of a lot of
unlabeled data) is that some errors (or noise) are intro-
duced on the labels. Therefore, we have to find strate-
gies to compensate for this noise that is added to the la-
bels. Several methods allow this problem to be tackled
(Song et al., 2021). Robust loss function methods use loss
functions that are noise tolerant, such as generalized cross
entropy (GCE) (Zhang and Sabuncu, 2018) and symmet-

1Also known as cluster or manifold assumptions, which say that sam-
ples that are in the same structure (i.e., manifold or cluster) are likely to
have the same labels.
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ric CE (Wang et al., 2019). A similar family of methods
known as loss adjustment can lower the negative influ-
ence of noisy labeled samples by adjusting them before
updating the weights of the model (Song et al., 2019).
Robust architecture methods estimate the label-transition
matrix, using noise adaptation layers (Goldberger and
Ben-Reuven, 2017) or dedicated architectures (Tong Xiao
et al., 2015). Robust regularization uses regularization to
improve the generalization capability of a model trained
on noisy-label data (Pereyra et al., 2017). Finally, other
families of methods can be used to select the correctly la-
belled samples (Song et al., 2019) or to use a set of weak
models to re-build the labels of the samples (Yan et al.,
2016).

Semi-automatic data annotation. Deep neural networks
have been shown to be efficient in learning representa-
tions that can be close to human perception (Zhang et al.,
2018). This can justify why some semi-automatic anno-
tation methods start by extracting features in an unsu-
pervised manner using auto-encoders, before projecting
the features obtained into a 2D space for manual and au-
tomatic annotation (Benato et al., 2018, 2021). To im-
prove the classification performances of models on un-
seen data, Benato et al. (Benato et al., 2018) proposed the
combination of semi-supervised learning with interactive
guided manual annotation on a 2D feature space, as im-
ages from the modified dataset from the National Institute
of Standards and Technology (MNIST) and from micro-
scopic images. Their pipeline relies on an auto-encoder
to extract the features, t-SNE to project the data in the 2D
space that is used to interactively/manually label samples,
and a Laplacian SVM and OPF to automatically propa-
gate labels from the labeled samples to the unlabeled sam-
ples. The same group (Benato et al., 2021) improved this
pipeline by incorporating the concept of ’confidence’ of
the classifiers when carrying out the automatic label prop-
agation. This allows the manual annotators to focus just
on the difficult samples that classifiers cannot correctly
predict with high confidence. Moreover, these two last
methods are the closest to our proposed method, along
with label propagation (Zhu and Ghahramani, 2002; Vin-
das et al., 2021), which are based on a KNN strategy. To
our knowledge, these methods do not propose to take into
account the quality of the 2D projection to do label propa-
gation, nor a strategy to select the optimal projection, nor

a strategy to compensate the noise in the labels introduced
by automatic annotation.

1.2. Contribution

As discussed above, the combination of semi-automatic
annotation (based on representation learning), dimension-
ality reduction, and label propagation is a promising so-
lution to overcome the difficulty data annotation. Indeed,
representation learning allows to extract features from raw
data in an unsupervised manner; dimensionality reduction
allows to get lower dimensional spaces easier for the ex-
pert to interact with; and label propagation allows to take
advantage of the few labeled samples to annotate some
unlabeled samples. To do this, we start by extracting
features from the data using a deep convolutional auto-
encoder (Tschannen et al., 2018; Chen et al., 2017), and
then project these features onto a 2D space using dimen-
sionality reduction techniques (i.e., t-SNE (Maaten and
Hinton, 2008)). We then select the best projection using
the silhouette score metric (Rousseeuw, 1987), and finally
propagate the labels based on both global and local qual-
ity measures of the projection (Lueks et al., 2011) and a
KNN strategy. Furthermore, we use the dataset obtained,
which is composed of the original labeled samples and the
new labeled samples (with our label propagation method),
to train a deep CNN (DCNN) to do classification using
a robust loss function that allow compensation for the
noise introduced in the labels by our semi-automatic data-
annotation method. Thereby, our proposed method is gen-
eral and composed of flexible blocks which can adapt to
different types of dataset (as shown experimentally in sec-
tion 3). More specifically, the core elements of our contri-
bution (optimal projection selection and label propagation
steps) are generic, automatic and only depend on the fea-
ture space obtained from the raw data. Moreover, thanks
to the hyper-parameters of our propagation method, the
user is able to control the trade-off between annotation er-
ror and proportion of labeled samples.

To summarize, the main contributions of this paper are
as follows:

• We propose a novel methodology for semi-automatic
data annotation based on global and local quality
metrics with controlled annotation error;

• We introduce a selection strategy to select the best
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projection for data annotation (obtained using a di-
mensionality reduction technique);

• We propose to use robust loss functions to improve
the classification performances of a classifier trained
on a noisy semi-automatic labeled dataset obtained
by a semi-automatic annotation method.

The rest of the paper is structured as follows. In Section
2, the semi-automatic data annotation method is presented
in detail. In Section 3, the data and experimental evalua-
tion are presented. In Section 4, we discuss the results of
the different experiments, and in Section 5, we conclude
and give some guidelines to our future work.

2. Proposed method: semi-supervised data annota-
tion and classification

Let us begin by specifying the three assumptions on
which our method is based: the structure assumption
(Chapelle et al., 2009); the preservation of the local
structure during projection; and the annotation space
coverage. The first assumption establishes that samples
belonging to the same structure are likely to be part of
the same class. The second assumption says that if sam-
ples are projected from a high-dimensional space to a
lower-dimensional space, their neighborhood should be
preserved (even if some errors can be tolerated). Finally,
the third assumption means that the few available labeled
samples should cover as much as possible of the whole
annotation space.

Let us assume that we have a dataset D composed of
a large number of unlabeled samples U (|U| = U, where
|U| is the cardinal of U), and a small number of labeled
samples L (|L| = L) with N classes. Our method (Fig. 2)
combines the different approaches that are presented in
Section 1.1, and is composed of four steps:

• Feature extraction: We start by extracting features
in an unsupervised manner using an auto-encoder
adapted to our data. Using unsupervised learning
techniques allows handcrafted features to be avoided
and to use all of the available samples fromD.

• Dimensionality reduction: We reduce the dimen-
sion of the latent space of the previous step to obtain
a 2D space. This allows more efficient automatic and

manual labeling of the samples, as shown in (Benato
et al., 2021). In this step, we compute different pro-
jections and we select the optimal projection using
the silhouette score.

• Automatic label propagation: By considering the
local projection quality of each sample in the 2D
space, we propagate the labels of high-quality la-
beled samples to high-quality unlabeled samples.
This allows the creation of a richer training set (i.e.,
it increases the size of L) with reduced effort.

• Classification with noisy labels: Finally, classifica-
tion is carried out using noisy-label techniques to
compensate for the noise introduced by the auto-
matic label propagation.

2.1. Feature extraction

To extract data-specific features from the TCD images,
we use an auto-encoder, an unsupervised way to obtain
a compressed representation of data. It is composed of
two parts: an encoder that encodes the information into a
latent feature space (in our case, with dimension >> 2),
and a decoder that uses the extracted features of the input
to reconstruct it. Although the principle of our method is
generic and can be used for multiple types of data (e.g.,
time-series, audio, volumes), as we work with images, we
use a convolutional auto-encoder to reduce the number of
parameters of the model, and to exploit the spatial context
of the images.

Moreover, as our objective is to annotate data, the con-
volutional auto-encoder is trained on the labeled and un-
labeled data, which allows the use of all of the available
data to improve the learning process.

2.2. Dimensionality reduction

Although the previous step provides considerable re-
duction of the dimensionality of our problem, it still re-
mains too large for our main objectives: automatic and
interactive manual annotation. Indeed, Benato et al.
(Benato et al., 2021) showed that working on a lower-
dimensional space allows better automatic and manual
annotations to be obtained than working on the original
high-dimensional space. That is why a dimensionality
reduction technique is used to project the latent feature
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Figure 2: Proposed semi-supervised annotation pipeline. Our label propagation method (LQ-KNN) is composed of four parts: (a) Feature extraction,
where a latent feature space is learned from the input samples; (b) Dimensionality reduction, where the latent feature space of the previous step is
projected into a 2D space; (c) Manual annotation, where an expert uses the 2D space obtained with the previous step with some metadata about the
samples to annotate some samples; (d) Automatic label propagation with a KNN strategy and local quality measures using the previously obtained
manually labeled dataset.

space extracted by the encoder of the auto-encoder to a
smaller 2D space that can be used for visualization and
manual annotation purposes. Following the recommen-
dations of (Benato et al., 2018) and (Benato et al., 2021),
we used t-SNE as the dimensionality reduction technique.
This choice is well justified, as we are more interested
in the local structure of the data than in the global struc-
ture, so t-SNE is preferred over methods such as PCA and
UMAP. However, t-SNE has three hyper-parameters: the
perplexity, the learning rate and the early exaggeration.
Therefore, special care needs to be taken when applying t-
SNE. To do this, we perform a grid search over the differ-
ent hyper-parameters of t-SNE, to obtain different 2D pro-
jections of the auto-encoder latent feature space. There-
fore, we need to have some criterion to identify ’good’
projections for our task (which is label propagation), be-
cause visually it can be difficult to distinguish between
two ’good’ projections, as they can be very similar. The
silhouette score (Rousseeuw, 1987) allows this to be done,
because it measures the compactness of each class cluster
(i.e., cluster of samples belonging to the same class), as
well as their distances with respect to the other class clus-

ters. Moreover, for label propagation using KNN strate-
gies, it is ideal to increase the inter-cluster distance and
to reduce the intra-cluster distance, because annotation
errors mainly come from samples that are located at the
boundaries of close class clusters, or from samples located
in the wrong class cluster.

Let us now recall the definition of the silhouette score
that we propose to use. Let us assume that we have
N classes c1, ..., cN , and f1, ..., fL+U embedded represen-
tations obtained by t-SNE projection P. Let us denote
for all j ∈ [1, L], y j the label of sample j, and for all
i ∈ [1,N],Ci = { j ∈ [1, L] / y j = ci} the set of indices of
the samples of class ci. The silhouette score, S compares
the similarity of a sample k ∈ Cp between the samples of
its own class and the samples of the other classes:

S (P) =
1
L

L∑
k=1

s(k)

where

∀k ∈ [1, L], s(k) =
{ µinter(k)−µintra(k)

max(µinter(k),µintra(k)) if |Cp| ≥ 2
0 else

(1)
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and where µinter(k) is the smallest mean distance between
the labeled sample k and all of the labeled samples for
the other classes, whereas µintra(k) is the mean distance
between the labeled sample k and all of the labeled sam-
ples of the same class. The best projection PB is then the
one that has the highest silhouette score. It is important to
note that only the labeled samples are used to compute the
silhouette score as these are the only samples with known
labels.

Additionally, as in the previous step, all of the train-
ing data (i.e., labeled and unlabeled) are used to optimize
the method, because we are interested in data annotation
and we separate this task from the classification task. In-
deed, the reconstruction part of the auto-encoder model is
only used to learn representations (i.e., the training step of
the auto-encoder) and the t-SNE algorithm is only used to
project the learned representations onto a 2D space.

2.3. Automatic label propagation

Our label propagation method is based on the concept
of the local quality (lq) of a projected point onto a lower-
dimensional space, as introduced by Lueks et al. (Lueks
et al., 2011). In simple terms, this metric measures how
well the neighborhood of a sample is preserved when
projected from a high-dimensional space (i.e., the auto-
encoder space) onto a lower-dimensional space (i.e., the
2D space obtained by t-SNE); higher values indicate good
preservation of the neighborhood of a point, and lower
values indicate modifications in the neighborhood of the
point. Moreover, we propose to use the local quality lq
of a projected point as the selection metric, to obtain the
labeled samples to be used for label propagation, and the
unlabeled samples to annotate during label propagation.
The idea is to use the co-ranking framework (Lee and
Verleysen, 2009) to quantify how well the global and lo-
cal structure of a high-dimensional manifold is preserved
when projected onto a lower dimension using a dimen-
sionality reduction technique such as t-SNE. The princi-
ple is the following. Let us define the rank of sample A
with respect to sample B as the index of A in a sorted
list (by increasing distance) of the neighbours of B. The
idea is to compute the ranks of all of the samples (with re-
spect to all of the other samples) in the high-dimensional
manifold and in the lower-dimensional manifold, and to
compare them, to quantify how much they change. The

hypothesis is that if the neighborhood of a sample is un-
changed when it is projected onto the lower-dimensional
manifold, then its ranks will also remain unchanged (so
ideally the structure assumption (Chapelle et al., 2009)
should be verified in both spaces). The computation of
the global and local quality metrics introduced by Lueks
et al. (Lueks et al., 2011) depends on two parameters:
ks and kt. Here, ks controls the size of the neighborhood
that we are going to look for when comparing the neigh-
borhoods2 in the high- and low-dimensional manifolds.
Then, kt controls the rank error (i.e., the rank changes that
we are going to tolerate3).

Furthermore, once we have computed the global and
local qualities of the selected projection PB, we can start
using these to propagate labels from labeled samples to
unlabeled samples. To formalize our method, we are go-
ing to build on (Zhu and Ghahramani, 2002). Let us de-
note Y ∈ R(L+U,N) as the label matrix, where the first L
rows correspond to the labeled samples and the last U
rows correspond to the unlabeled samples. As we work
with probabilistic labels, Yi j is the probability that sample
i belongs to class j. Let us denote, T K,τ ∈ R(L+U,L+U) as
a probabilistic transition matrix, where T K,τ

i j is the proba-
bility to jump from sample i to sample j, which depends
on K, the size of the neighborhood used to search for la-
beled neighbours for an unlabeled sample (not to be con-
fused with kt, which was used before to compute the local
quality of the 2D points), and τ, the threshold used to de-
termine whether the local quality of a point is considered
acceptable or not (not to be mistaken for ks). We define
T K,τ based on the nearest-neighbors method and the local
quality:

∀i, j ∈ [1, L + U],T K,τ
i j =


1 if (i, j ∈ [1, L] and i = j)
or (i, j ∈ PK,τ)
or (i = j and i ∈ Cτ)

0 else
(2)

with

• PK,τ = {i ∈ [L + 1, L + U], j ∈ [1, L] s.t. fi ∈

2the higher ks, the more demanding it is in terms of global quality
3the higher kt , the more errors we tolerate, but the less informative in

the local quality

7



VK( f j), lq( fi, ks, kt) > τ, lq( f j, ks, kt) > τ,∀ f ∈
VK( fi), lq( f j, ks, kt) > lq( f , ks, kt)}, where

– fi ∈ VK( f j) means that the embedded repre-
sentation of the unlabeled sample i is in the K-
neighborhood of the embedded representation
of the labeled sample j;

– lq( fi, ks, kt) > τ, lq( f j, ks, kt) > τ means that the
local quality of samples i and j are greater than
the defined threshold τ;

– ∀ f ∈ VK( fi), lq( f j, ks, kt) > lq( f , ks, kt) means
that the embedded representation of the labeled
sample j is the one that has the best local
quality in the K-neighborhood of the unlabeled
sample i.

• Cτ = {i ∈ [L + 1, L + U] s.t. lq( fi, ksk, kt) < τ} is a
set that contains all of the unlabeled samples with a
local quality score smaller than the defined threshold
τ. These samples will not be taken into account for
label propagation.

The set PK,τ allows propagation of the labels from the
labeled samples to their unlabeled neighbors based on a
local quality criterion, while the set Cτ avoids labeling
samples that do not respect the local quality criterion. We
can now define our label propagation algorithm as in (Zhu
and Ghahramani, 2002):

• Propagate the labels from the good local quality la-
beled samples to the good local quality unlabeled
samples: Y ← T K,τ × Y;

• Row normalize Y (by construction of T K,τ, Y is row-
normalized);

• Update T K,τ by considering adding the new labeled
samples to L;

• Repeat the process until there are no more samples to
label (or until some number of iterations is reached).

Due to the formalism introduced in (Zhu and Ghahra-
mani, 2002) and used here, we can see the difference
between our introduced method and the method intro-
duced by Benato et al. (Benato et al., 2018, 2021): in
our method, the transition matrix T is computed through
KNN and local quality measures, whereas with Benato et

Algorithm 1: Local quality with KNN (LQ-KNN)
label propagation
Input: D = L ∪U, ks, kt, K, τ
Output: New labeled dataset D̃
Iterations:

• Extract features of ALL of the samples using an
auto-encoder model.

• Dimensionality reduction of the previous
representations:

– Apply t-SNE with grid search;

– Select the best projection PB using the
silhouette score;

– Obtain the embedded representations
f1, ..., fL+U of the samples using PB;

– Compute the local quality lq(., ks, kt) of each
sample;

– Sort the representations obtained by
decreasing the local quality.

• Propagate the labels using the local quality of the
embedded representations:

while PK,τ , ∅ do
Y ← T K,τ × Y;
Row normalize Y;
Update L,U, T K,τ and PK,τ;

end

• Define D̃ = L

al. the transition matrix T is computed using Laplacian
SVM and OPF.

Intuitively, our algorithm finishes when there are no
more samples to label, or when there are no more unla-
beled samples with local quality greater than the estab-
lished threshold. The final algorithm of our method is
presented in Algorithm 1.

2.4. Classification with noisy labels

Once we obtain a new labeled dataset with our pro-
posed method, we perform another task: naming classi-
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fication, to take advantage of having more labeled data.
However, as expected, our method introduces some noise
into the labels, which can disrupt the learning process of
the classification model. To overcome this, we propose to
use one noise robust loss function, GCE loss (Zhang and
Sabuncu, 2018), which behaves well under noisy-label
situations, and allows the trained models to maintain good
generalization for unseen data. If we note for all samples
x ∈ L of label y ∈ {0, 1}C , g(x) the prediction of a classi-
fication model, GCE loss is defined as:

Lq(g(x), yi) =
1 − gi(x)q

q
(3)

where yi and gi(x) are the i-th components of the true la-
bel y and the predicted label g(x). The hyper-parameter
q allows control of the noise tolerance and the conver-
gence speed; when q → 1, we get (ignoring a multiplica-
tion factor) the mean absolute error loss function, which
is known to be noise tolerant but with slow convergence
speed, whereas when q→ 0, we get the CE loss function,
which is known to have fast convergence speed but which
is not noise tolerant. Moreover, following the recommen-
dations of (Zhang and Sabuncu, 2018), we are going to fix
q = 0.7, as this represents a good trade-off between noise
tolerance and convergence speed.

3. Experiments and results

In order to validate our proposed method, we test it
on three different datasets: MNIST (LeCun and Cortes,
2010), OrganCMNIST (Yang et al., 2021; Bilic et al.,
2019) and a private dataset composed of TCD HITS.
Without loss of generality, the models used for feature
extraction and classification tasks were adapted to each
dataset. The core of our method (dimensionality reduc-
tion, label propagation, robust loss function) is applied
using the same parameters for all the datasets.

3.1. Data

We used two public datasets, MNIST and OrganCM-
NIST. The first one is a subset of the MNIST dataset
(LeCun and Cortes, 2010), which includes 15000 labeled
samples for training, and 10000 labeled samples for test-
ing. The second one is the OrganCMNIST (Yang et al.,

2021; Bilic et al., 2019) dataset, which includes 15392 la-
beled samples for training and 8268 labeled samples for
testing. This dataset is composed of 28 × 28 computed
tomography images of 11 different organs.

The HITS dataset includes 52 patients (20 men, 25
women, and 7 unknown; median age 69, range 21 to 91,
computed with the available information) from 11 hos-
pitals from France, Switzerland, Belgium, England, and
The Netherlands. Some of the patients were on Neu-
rovascular Units and Cardiovascular Units, and we identi-
fied two pathologies: stenosis and patent formamen ovale.
Additionally, the data of some of the patients were ac-
quired during surgical procedures: transcatheter aortic
valve implantation and atrial fibrillation ablation. Further-
more, some of the patients received a contrast agent dur-
ing the recording, which were mainly Sonovue (an ultra-
sound contrast agent) for the hospitals in Lyon (France),
and Iobitridol (an iodine-containing contrast agent) for the
hospitals in Belgium.

The recordings were acquired using two TCD devices
(TCD-X, WAKIe; Atys Medical) under different condi-
tions and for different durations, and the recording condi-
tions and parameters were different across all of the pa-
tients. However, according to the device settings ranges
and the recommendations for monitoring the middle cere-
bral artery and performing emboli detection, we have the
following information:

• Pulse repetition frequency: 6.2 kHz;

• Transmitted ultrasound frequency: 1.5 MHz;

• Insonation depth: 45 − 55 mm;

• Sample volume: 8 − 10 mm3.

The data obtained from the TCD recordings, as the raw
data, were then processed to obtain suitable representa-
tions for the models we developed.

3.2. Pre-processing

From each TCD recording, we detect HITS and extract
images (using the data management software, ADMS;
Atys Medical), which represents the HITS spectrograms.
The detection and extraction parameters were fixed (and
were equal for all of the samples in the database). We used
a high-pass filter of 150 Hz, a detection threshold for the
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HITS of 9 dB, a gain of 6 dB, and no noise reduction (the
question of the value of the detection threshold was re-
ported in (Guepie et al., 2019)). In summary, a HITS was
detected if it satisfied the criteria of (Spencer et al., 1995)
and if its signal intensity was greater than 9 dB. This pro-
cedure provided 68 492 HITS in total, from which 1545
were manually labeled by an expert (403 artifacts, 569
gaseous emboli, 569 solid emboli, 4 unknown) using the
2D reduced space obtained using our pipeline 2. This la-
beled dataset is henceforth referred to as the HITS dataset
whereas the partially labeled dataset (68 492 HITS, 1545
labeled) is referred to as the large HITS dataset.

3.3. Baselines

For each label propagation experiment, we used a stan-
dard KNN strategy (Std-KNN) (Vindas et al., 2021),
where the labels are propagated using only a KNN al-
gorithm without local quality (so the computation of
the transition matrix T K depends only on K, the neigh-
borhood considered to propagate the labels). Addition-
ally, we compare our method (LQ-KNN) to OPF-semi
(Amorim et al., 2014), which is commonly used for data
annotation. We use the python library OPFython (de Rosa
and Papa, 2021) to implement the OPF-semi models. For
the classification experiments, our baselines are: (1) mod-
els that use only the original labeled dataset; and (2) mod-
els that use the augmented dataset trained without noise-
tolerant loss functions.

3.4. Evaluation strategy

Evaluation of label propagation. To evaluate our label
propagation method, we used the annotation accuracy,
which is defined as the ratio between the number of cor-
rectly labeled samples and the total number of labeled
samples provided by the method. We also used the per-
centage of labeled samples, which is defined as the ra-
tio between the number of automatically labeled samples
and the initial number of unlabeled samples. For label
propagation experiments using a fully annotated dataset,
we considered only 10% of the training samples as origi-
nally labeled (i.e., L is composed of 10% of the available
labeled samples, and U is composed of the remaining
samples). Then, we select the optimal projection using
only the labeled samples and we propagate the labels from
these samples to the rest of the samples using the selected

projection. The selection of the originally labeled sam-
ples is carried out using random sampling. For statistical
purposes, we repeat each label propagation run 50 times.
In addition to these 50 repetitions, for the MNIST experi-
ment, we train 10 auto-encoder models, to get tighter sta-
tistical results.

Evaluation of the classification task. Furthermore, we
also evaluate the impact of our label propagation method
through the performance change of a classifier trained
on datasets obtained without and with label propagation.
Moreover, we use robust loss functions to compensate for
the noise in the labels introduced by the label propaga-
tion methods. Two different evaluation strategies were
used based on the dataset type. For the MNIST and Or-
ganCMNIST datasets we used 50 times repeated holdout
as evaluation method with general accuracy as evalua-
tion metric. The training set was obtained by propagating
the labels from 10% of the training samples (15000 for
MNIST and 15392 for OrganCMNIST) to the rest of the
training samples, whereas the test set was fixed and com-
posed of the manually labeled testing samples (10000 for
MNIST and 8268 for OrganCMNIST) which are not used
for label propagation. For the HITS datasets, we used
the Matthews correlation coefficient (MCC) (Hicks et al.,
2021) and class accuracies as evaluation metrics4 and the
evaluation strategy was based on leave-one-subject-out
evaluation. First, we propagate the labels from the labeled
samples to the unlabeled samples (for the HITS dataset we
considered 10% of the samples as labeled and for the large
HITS dataset we used all the labeled samples i.e. 1545
samples). Secondly, different train/test splits are created
by taking as test samples the manually labeled samples of
a fixed subject and as train samples all the (manually and
automatically) labeled samples of the remaining subjects.
In this way, we get 39 train/test splits. Finally, we train
and evaluate different models using the created splits and
we repeat this process 10 times for the large HITS dataset
and 20 times for the HITS dataset.

Moreover, for all of the experiments using local quality
metrics, we fixed ks = 10 and kt = 10. We choose these

4We use class accuracy as the noise that we introduce in the labels
is asymmetric, mainly between the gaseous emboli and solid emboli
classes
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values because: (1) we saw experimentally that the val-
ues of ks and kt do not have an important influence on the
annotation accuracy for values that are not too large (i.e.,
less than 50); (2) we want good local qualities in small
neighborhoods to better propagate labels; (3) higher val-
ues of ks and kt could lead to ’false’ good local-quality
points. Further discussion can be found in Section 4.

3.5. Experimental set-up
Experiment 1: Label propagation evaluation. The ob-
jective of this experiment was to test our method using
three datasets: a subset of the MNIST dataset verifying
the structure assumption; and two medical datasets, as the
OrganCMNIST and the HITS datasets. The auto-encoder
architectures used for unsupervised feature extraction are
shown in Figure 3 and its training parameters are given in
Table 1. As regards the optimal projection selection, we
did the grid search over three hyper-parameters (perplex-
ity, early exaggeration and learning rate) and their ranges
can be found in Table 2. Finally, the parameters of the
different label propagation experiments are given in Ta-
ble 3, and the results are given in Table 4 and shown in
figures 4, 5, and ??. Several phenomena can be observed.

First, from Table 4, we can see that our method, LQ-
KNN, is comparable to OPF-semi. Indeed, although Std-
KNN and LQ-KNN do not annotate all the available sam-
ples for the hyper-parameters tested (contrary to OPF-
semi), they annotate more than 96% of the unlabeled sam-
ples with an annotation accuracy greater than 90% for the
MNIST dataset, 79% for the OrganCMNIST dataset, and
81% for the HITS dataset compared to 82%, 75% and
78% for OPF-semi for the MNIST, OrganCMNIST and
HITS datasets, respectively. Additionally, we can see that
our method is faster than OPF-semi, by a factor of 102-
103.

Secondly, from Table 4, we can see that our proposed
method (LQ-KNN) yields an annotation accuracy greater
than 92% for MNIST, 82% for OrganCMNIST and 82%
for the HITS dataset, which is 10%, 7%, and 3% greater
than with OPF-semi respectively. Furthermore, the meth-
ods using the local quality with neighborhood propaga-
tion yield better results than using just Std-KNN. Indeed,
with the HITS dataset, Std-KNN with K = 10 gives an
annotation accuracy of 81.36%, with labeling of 99.58%
of the samples, against an annotation accuracy of 82.67%
and labeling of 98.50% of the samples for LQ-KNN with

τ = 0.1 and K = 10. This can also be observed for the
MNIST and OrganCMNIST datasets.

Thirdly, from Figures 4 and ??, we can see that the an-
notation accuracy and the proportion of labeled samples
depends on the neighborhood K within which we propa-
gate the labels; the higher K, the more samples we anno-
tate, but the smaller the annotation accuracy; inversely,
the smaller K, the fewer samples we annotate, but the
greater the annotation accuracy. Moreover, these quan-
tities depend on the local quality threshold τ used to de-
fine good quality samples: the higher τ, the higher the an-
notation accuracy, but the smaller the number of labeled
samples.

Fourthly, in Figure 4, we can identify two regimes in
the behavior of our method. The first regime, which we
term the ’dynamic’ regime, is obtained at the beginning
for relatively small values of K, where the number of
newly labeled samples increases with the value of K. The
second regime, which we term the ’permanent’ regime, is
obtained for higher values of K, and in this case the num-
ber of labeled samples and the annotation accuracy reach
plateaus.

Finally, we studied the importance of the label prop-
agation order by fixing a projection and propagating the
labels using LQ-KNN with and without sorting the sam-
ples by decreasing local qualities. Figure 5 shows that the
LQ-KNN method that starts by labeling the samples with
higher local qualities yields better annotation accuracies
than the methods that do not take into account the anno-
tation order. The difference between the two methods be-
comes more pronounced when we increase the neighbor-
hood size K used for label propagation.

Experiment 2: Validation of the projection selection strat-
egy. The objective of this experiment is to validate our
proposed projection selection strategy (see Section 2.2).
To do this, we start by selecting the bests and worsts 2D
projections obtained with t-SNE according to the silhou-
ette scores (Figure 6). Here, the selected best 2D pro-
jections have a silhouette score of 0.54, with the worsts
at −0.23. Then, we propagate the labels using the same
strategy as in experiment 1 for the HITS dataset. These
results are given in Table 5. We can see that both prop-
agation methods achieve considerably higher annotation
accuracies for the best projection compared to the worst
projection for all values of K. Furthermore, even for the
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(a)

(b)

Figure 3: Auto-encoder architectures used. (a) Architecture for the MNIST and OrganCMNIST datasets. (b) Architecture for the HITS dataset.

Table 1: Training parameters of the auto-encoders of experiment 1. MSE stands for mean squared error loss.

Dataset Epochs Batch Size Learning rate Optimizer Weight Decay Loss function
MNIST 5e-2 1e-5

OrganCMNIST 50 32 5e-5 1e-7 Adamax MSE
HITS 5e-3 1e-2

Table 2: Parameters for the grid search in experiment 1. As the HITS and OrganCMNIST datasets are more complex than the MNIST dataset, a
more complete grid search is needed to find optimal projections.

Dataset Perplexity Early Exaggeration Learning rate
MNIST [10, 30, 50] [50, 250, 500] [10, 100, 1000]

OrganCMNIST [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] [5, 10, 25, 50, 75, 100, 200, 500] [10, 50, 100, 500, 1000]
HITS

worst projection, LQ-KNN provides higher annotation ac-
curacies at the expense of the number of labeled samples.

Experiment 3: Evaluation through a classification task
on a dataset with known label noise. We evaluate the re-
sults of the previous experiment on a classification task.
The objectives of this experiment are two-fold: to deter-
mine the improvement in the classification performances

through to the use of new automatically labeled data; and
to show the interest in using robust loss functions to com-
pensate for the annotation error from the automatic la-
bel propagation. We trained a CNN (Fig. 7) on differ-
ent datasets (see Table 6) with different training parame-
ters based on the dataset (see Table 7). Figure 8 shows
the MNIST dataset results, Figure 9 shows the OrganCM-
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Table 3: Parameters for label propagation in experiment 1. The Dataset corresponds to the dataset used as the basis to test the label propagation
method. We select 10% of the samples as labeled (L), and we consider the rest of the samples as unlabeled (U). We then propagate the labels from
the samples of L to some of the samples of U using one of the propagation methods, to obtain the final dataset. The experiments using the HITS
dataset were repeated 50 times. The experiments using the MNIST dataset were repeated 50 times for 10 different auto-encoders (500 repetitions
in total), except for OPF-semi, where we did 20 repetitions for each auto-encoder. K corresponds to the size of the neighborhood used to search for
labeled neighbours for an unlabeled sample.

Exp. name Dataset |L| |U| Propagation K τ Repetitions
Std-KNN MNIST 1496 13504 Std-KNN 1 ≤ K ≤ 20 - 500

HITS 152 1393 Std-KNN 1 ≤ K ≤ 20 - 50
OrganCMNIST 1534 13858 Std-KNN 1 ≤ K ≤ 20 - 50

LQ-KNN-τ MNIST 1496 13504 LQ-KNN 1 ≤ K ≤ 20 0.1 ≤ τ ≤ 0.5 500
HITS 152 1393 LQ-KNN 1 ≤ K ≤ 20 0.1 ≤ τ ≤ 0.5 50

OrganCMNIST 1534 13858 LQ-KNN 1 ≤ K ≤ 20 0.1 ≤ τ ≤ 0.5 50
OPF-semi MNIST 1496 13504 OPF-semi - - 200

HITS 152 1393 OPF-semi - - 50
OrganCMNIST 1534 13858 OPF-Semi - - 20

Table 4: Experiment 1: Label propagation results using the MNIST, OrganCMNIST and HITS datasets. L corresponds to the set of initially
(manually) labeled samples, U corresponds to the set of initially unlabeled samples, τ corresponds to the local quality threshold that defines if
a sample is considered as of good quality, K corresponds to the size of the neighborhood used to search for labeled neighbours for an unlabeled
sample. Our proposed method LQ-KNN outperforms OPF-semi (Amorim et al., 2014) and the baseline Std-KNN, at the expense of a smaller
number of labeled samples. Additionally, LQ-KNN and Std-KNN are faster than OPF-semi by a factor of 103.

Dataset Propagation |L| |U| τ K Annotation Final % of Annotation
method accuracy labeled time

samples (%) (ms/sample)
MNIST Std-KNN 1496 13504 - 5 91.83 ± 1.47 95.39 ± 1.05 (30.98 ± 5.84) × 10−3

Std-KNN 1496 13504 - 10 90.74 ± 1.45 99.43 ± 0.23 (28.78 ± 5.13) × 10−3

LQ-KNN 1496 13504 0.1 5 93.12 ± 1.36 93.88 ± 0.66 (59.10 ± 12.35) × 10−3

LQ-KNN 1496 13504 0.1 10 92.66 ± 1.30 98.16 ± 0.42 (50.48 ± 11.32) × 10−3

OPF-semi 1496 13504 - - 82.32 ± 6.17 100.0 ± 0.0 102.71 ± 17.52
OrganCMNIST Std-KNN 1534 13858 - 5 81.87 ± 0.76 90.26 ± 2.64 (26.33 ± 2.65) × 10−3

Std-KNN 1534 13858 - 10 79.86 ± 0.67 99.00 ± 0.20 (23.41 ± 1.98) × 10−3

LQ-KNN 1534 13858 0.1 5 84.46 ± 0.57 85.62 ± 1.99 (53.00 ± 7.47) × 10−3

LQ-KNN 1534 13858 0.1 10 82.73 ± 0.44 96.24 ± 1.09 (44.36 ± 5.69) × 10−3

OPF-semi 1534 13858 - - 75.22 ± 4.48 100.0 ± 0.0 86.52 ± 0.51

HITS Std-KNN 152 1393 - 5 82.12 ± 2.37 95.99 ± 1.70 (10.39 ± 0.20) × 10−2

Std-KNN 152 1393 - 10 81.36 ± 1.81 99.58 ± 0.63 (10.04 ± 0.18) × 10−2

LQ-KNN 152 1393 0.1 5 82.84 ± 2.12 94.48 ± 1.72 (16.87 ± 0.48) × 10−3

LQ-KNN 152 1393 0.1 10 82.67 ± 2.02 98.50 ± 0.80 (16.13 ± 0.35) × 10−2

OPF-semi 152 1393 - - 78.40 ± 13.44 100.0 ± 0.0 9.48 ± 1.1

NIST dataset results, and Figures 10 and 11 show the re-
sults using the HITS datasets.

On the one hand, from the OrganCMNIST results, three

interesting points can be noted. First, from Figure 9,
we can see that the best classification performances are
achieved with the dataset obtained with our label propa-
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Figure 4: Experiment 1: Comparing LQ-KNN propagation with different hyper-parameters. (a) MNIST dataset annotation accuracy. (b) MNIST
dataset labeled samples (in %). (c) OrganCMNIST dataset annotation accuracy (in %). (d) OrganCMNIST dataset labeled samples (in %). (e) HITS
dataset annotation accuracy. (f) HITS dataset labeled samples (in %). τ corresponds to the threshold used to define good local-quality samples. For
LQ-KNN: purple curves, τ = 0.1; green curves, τ = 0.3; blue curves, τ = 0.5. The proportion (%) of unlabeled samples that were labeled by the
methods converges with K, hence we show here the results for K ≤ 11.

gation method, LQ-KNN, and trained with a robust loss
function, GCE, which yields a global accuracy of 75.76%
against 74.58% with OrganCMNIST Std-KNN and GCE,
and 70.62% without label propagation and GCE. Sec-
ondly, Figure 9 also shows that the best results are ob-
tained with the GCE loss function with label propagation

(Std-KNN or LQ-KNN). Finally, we can see that even
when we do not use a robust loss function (i.e., when
we use CE), our label propagation method provides better
performances (72.73%) than the baseline OrganCMNIST
Std-KNN (71.71%). The same behaviour is observed in
Figure 8 for the MNIST dataset.

14



Table 5: Experiment 2. Label propagation for the HITS dataset using the best and worst selected 2D projections according to the silhouette scores.
The best selected projection allows automatic annotation of more samples with higher annotation accuracy. L, set of initially (manually) labeled
samples;U, set of initially unlabeled samples; τ, local quality threshold that defines if a sample is considered as of good quality.

K Propagation Projection Silhouette |L| |U| τ Annotation Final
method Score accuracy labeled samples %

5 Std-KNN Best 0.53 ± 0.05 152 1393 - 82.11 ± 2.37 95.99 ± 1.70
Std-KNN Worst −0.26 ± 0.07 152 1393 - 58.43 ± 8.95 98.03 ± 1.22

5 LQ-KNN Best 0.53 ± 0.04 152 1393 0.1 82.84 ± 2.12 94.47 ± 1.72
LQ-KNN Worst −0.25 ± 0.09 152 1393 0.1 70.87 ± 7.18 68.57 ± 10.16

15 Std-KNN Best 0.53 ± 0.05 152 1393 - 80.31 ± 2.03 99.97 ± 0.07
Std-KNN Worst −0.26 ± 0.07 152 1393 - 56.44 ± 9.83 99.66 ± 0.20

15 LQ-KNN Best 0.53 ± 0.04 152 1393 0.1 82.82 ± 1.96 98.84 ± 0.67
LQ-KNN Worst −0.25 ± 0.09 152 1393 0.1 66.16 ± 8.76 79.92 ± 7.531

(a)

(b)

Figure 5: Experiment 1: Evaluation of the propagation order. (a) Anno-
tation accuracy (in %). (b) Labeled samples (in %). For LQ-KNN with
τ = 0.1: blue curves, starting by labeling the higher local quality sam-
ples (the samples are sorted by decreasing local qualities); red curves,
without taking into account the propagation order (the samples are not
sorted by decreasing local qualities).

On the other hand, the classification results for the
HITS dataset (Figs. 10, 11) also reveal the following.
First, LQ-KNN and Std-KNN label propagation improve
the performances of the model with respect to the model
trained using less labeled samples, for all of the classes
(in terms of MCC, HITS LQ-KNN-K10 with CE outper-
forms HITS with no propagation with CE by 5.68%, and
HITS LQ-KNN-K10 with GCE outperforms HITS with
no propagation with GCE by 9.71%).

Secondly, when we propagate the labels to annotate
less than 50% of the unlabeled samples (i.e., when we
use HITS Std-KNN-K2, and HITS LQ-KNN-K4 datasets
in Table 6), LQ-KNN propagation outperforms Std-KNN
for both loss functions. Interestingly, we can see that
even though HITS LQ-KNN-K3 has fewer labeled sam-
ples than HITS Std-KNN-K2, it provides better classifica-
tion performances, when using a nonrobust loss function.
Indeed, the classifier trained on HITS LQ-KNN-K3 with
CE outperforms that trained on HITS Std-KNN-K2 with
CE by a margin of 1.90% in terms of MCC. This is not
observed when using a robust loss function.

Finally, HITS LQ-KNN-k10 CE and HITS LQ-KNN-
k10 GCE outperform HITS Std-KNN-k10 GCE and HITS
Std-KNN-k10 CE in terms of MCC and class accuracy.
For both loss functions, HITS LQ-KNN-k10 outperforms
HITS Std-KNN-k10 in terms of solid emboli accuracy by
a margin of over 3.5%. This is particularly interesting as
solid emboli are the most critical class, because solid em-
boli can cause ischemic stroke. Additionally, HITS LQ-
KNN-k10 GCE performs similarly to HITS Whole CE
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Figure 6: Experiment 2: Examples of best and worst 2D chosen projec-
tions of the HITS dataset (1545 samples) obtained with respect to the
silhouette scores. (a) Best projection (silhouette score, 0.54 ± 0.05). (b)
Worst projection (silhouette score, −0.23± 0.09). The best selected pro-
jection gives more distinct clusters per class than the worst. Art., artifact;
GE, gaseous emboli; SE, solid emboli.

and HITS Whole GCE, which are fully manually labeled
datasets.

Experiment 4: Classification using a semi-automatically
labeled HITS dataset with unknown label noise. The ob-
jective of this experiment was to study the behavior of our
method, LQ-KNN, on a larger-scale real medical dataset
with unknown label noise. We used our semi-automatic
labeling method to create different datasets using all of
the available labeled samples (i.e., the 1545 samples) and
part of the available unlabeled samples (with unknown la-
bels). To avoid imbalanced dataset problems, we balanced

the classes based on the final numbers of labeled solid
emboli: we sample in the artifacts and gaseous emboli
classes to get the same number of samples as the num-
ber of labeled solid emboli (this is possible, as we have
more artifacts and gaseous emboli than solid emboli). We
evaluate the different datasets on a classification task, pro-
ceeding in the same way as in experiment 3. To do this,
we trained a classification CNN with the architecture in
Figure 7b on two new datasets, HITS Std-KNN Large and
HITS LQ-KNN Large, plus the datasets of experiment 3
(see Table 8). The training was carried out using two loss
functions, CE and GCE, with a learning rate of 1e − 3,
a batch size of 32, a weight decay of 1e − 7, during 50
epochs. The results are shown in Figures 12 and 13. Three
main points can be noted.

First, we can see that HITS LQ-KNN-Large trained
with CE and GCE outperforms all of the Std-KNN
and LQ-KNN methods in terms of MCC and SE accu-
racy (including those of experiment 3). If we look at
the MCC, HITS LQ-KNN-Large outperforms HITS Std-
KNN-Large by a margin greater than 2% (where HITS
LQ-KNN-Large GCE outperforms the other datasets). We
observe similar behavior for the SE accuracies.

Secondly, we can see that with respect to the results in
experiment 3, the performances of the model trained using
HITS Std-KNN-Large increases significantly for the solid
emboli class, decreases for the artifact and gaseous em-
boli classes, while the variability is reduced when using
more samples. On the other hand, the performances of the
model trained using LQ-KNN improve significantly for
the solid emboli and gaseous emboli classes, and decrease
for the artifact class, while the variability is reduced.

Finally, in terms of MCC, the best performing model
for this experiment is obtained using the GCE loss func-
tion and the HITS LQ-KNN-Large dataset, which outper-
forms the best performing model of experiment 3 trained
on the HITS Whole dataset that was fully manually la-
beled and without label noise. However, when using a
nonrobust loss function (i.e., CE), HITS LQ-KNN-Large
and HITS Whole have similar behaviors, even though
HITS LQ-KNN is a larger dataset. Moreover, HITS LQ-
KNN-Large improves the general solid emboli accuracy
with respect to HITS Whole for both loss functions. This
comes at the expense of significant decrease in the ar-
tifacts accuracy. Nonetheless, when we use robust loss
functions to compensate for the noise (mainly between the

16



(a)

(b)

Figure 7: Convolutional neural network architectures used for classification for the different datasets. (a) Architecture for the MNIST dataset. (b)
Architecture for the HITS dataset.

Figure 8: Experiment 3: Comparison of the accuracy of the different
label propagation methods on the MNIST dataset. The best perform-
ing classification model is the one trained on the dataset obtained with
our proposed method, LQ-KNN, and with a robust loss function. When
using nonrobust loss functions, the best performing classifier is the one
trained with the dataset obtained using LQ-KNN.

gaseous emboli and solid emboli classes) introduced with

Figure 9: Experiment 3: Comparison of the accuracy of the different
label propagation methods on the OrganCMNIST dataset. The best per-
forming classification model is the one trained on the dataset obtained
with our proposed method, LQ-KNN, and with a robust loss function.
When using nonrobust loss functions, the best performing classifier is
the one trained with the dataset obtained using LQ-KNN.

17



Table 6: The different datasets used to train the models in experiment 3. The Core dataset corresponds to the dataset used as the basis to test
the label propagation method. We select 10% of the samples as labeled (L), and we consider the rest of the samples as unlabeled (U). We then
propagate the labels from the samples of L to some of the samples of U, to obtain the final dataset. K corresponds to the neighborhood that we
consider to propagate the labels, and τ corresponds to the local quality threshold that defines if a sample is considered of good quality. None, no
labeled propagation used to obtain the final dataset. The mean annotation accuracy correspond to the accuracy of the label propagation method, not
to be confused with the classification accuracy obtained by training classification models on these datasets (figures 8- 11).

Dataset Core dataset Propagation
method

|L| |U| # of automat-
ically labeled
samples

Mean an-
notation
accuracy

K τ

MNIST No propagation MNIST None 1496 13504 - - - -
MNIST Std-KNN Std-KNN 13426 ± 31 90.74 ± 1.45 10 -
MNIST LQ-KNN LQ-KNN 13256 ± 56 92.66 ± 1.30 10 0.1
OrganCMNIST No propagation OrganCMNIST None 1534 13858 - - - -
OrganCMNIST Std-KNN Std-KNN 13720 ± 28 81.87 ± 0.76 10 -
OrganCMNIST LQ-KNN LQ-KNN 13336 ± 151 82.73 ± 0.44 10 0.1
HITS Whole HITS None 1545 0 - - - -
HITS No propagation HITS None 152 1393 - - - -
HITS Std-KNN-K2 HITS Std-KNN 591 ± 42 84.95 ± 2.61 2 -
HITS Std-KNN-K10 HITS Std-KNN 1387 ± 8.7 81.36 ± 1.81 10 -
HITS LQ-KNN-K3 HITS LQ-KNN 554 ± 63 89.88 ± 2.77 3 0.3
HITS LQ-KNN-K4 HITS LQ-KNN 700 ± 54 89.65 ± 2.36 4 0.3
HITS LQ-KNN-K10 HITS LQ-KNN 1372 ± 11 82.67 ± 2.02 10 0.1

Table 7: The different training parameters used in experiment 3. q represents the hyper-parameter of the GCE loss function giving a trade-off
between convergence speed and robustness to label-noise. The higher the value of q, the more robust GCE but the smaller the convergence speed;
the smaller the value of q the faster the convergence but the smaller the robustness to label-noise.

Dataset Epochs Batch Size Learning rate Optimizer Weight Decay Loss function q
MNIST 100 7e-3 1e-7 CE -

GCE 0.7
OrganCMNIST 150 32 7e-3 1e-5 Adamax CE -

GCE 0.5
HITS 50 2e-2 1e-7 CE -

1e-3 GCE 0.7

Table 8: New datasets used in experiment 4. The objective of the experiment was to study the behavior of our method on a larger-scale real medical
dataset with unknown label noise.

Dataset Propagation |L| |U| # of automatically Samples per K τ
Method labeled samples class

HITS Std-KNN Large Std-KNN 1545 66947 13653 4551 10 -
HITS LQ-KNN Large LQ-KNN 1545 66947 14970 4990 10 0.1

LQ-KNN, this also outperforms the HITS Whole dataset
for the gaseous emboli class.

Implementation details. All the codes were implemented
using Pytorch (Paszke et al., 2019) and Scikit-Learn (Pe-
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Figure 10: Experiment 3: Test of the Matthews correlation coefficient (MCC) as comparisons using the semi-automatically labeled HITS dataset
with known label noise. Both label propagation methods increase the classification performances of the trained model, with similar performances
to a model trained with a fully manually labeled dataset. Our proposed method, LQ-KNN, globally outperforms the baseline model.

Figure 11: Experiment 3: Test of the solid emboli accuracies as a comparison of semi-automatically labeled HITS datasets with known label noise.
Our proposed method, LQ-KNN, outperforms the baseline model with the proposed hyper-parameters.

dregosa et al., 2011). The different experiments were car-
ried out on a high-performance computing cluster with 25
heterogeneous machines (each machine with between 16
Gb and 128 Gb of RAM, CPUs with 8 to 32 cores, and

different types of Nvidia Quadro RTX and Tesla GPUs).
The GitHub for the MNIST experiments can be found at:

https://github.com/yamilvindas/LQ-
KNN DataAnnotation.
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Figure 12: Experiment 4: Tests of the Matthews correlation coefficient (MCC) as comparisons using semi-automatically labeled HITS datasets
with unknown label noise. We propagate the labels from 1545 manually labeled samples to part of the remaining 66 947 unlabeled samples. Based
on the label propagation method used, we obtain datasets with different numbers of samples (however, the classes are always balanced): 15 198
samples when using the baseline Std-KNN with K = 10, and 16 515 when using LQ-KNN with K = 10 and τ = 0.1.

Figure 13: Experiment 4: Tests of the solid emboli accuracies as comparisons using semi-automatically labeled HITS datasets with unknown
label noise. We propagate the labels from 1545 manually labeled samples to part of the remaining 66 947 unlabeled samples. Based on the label
propagation method used, we obtain datasets with different numbers of samples (however, the classes are always balanced): 15 198 samples when
using the baseline Std-KNN with K = 10, and 16 515 when using LQ-KNN with K = 10 and τ = 0.1.

20



4. Discussion

Experiment 1. This experiment confirms that our method,
LQ-KNN, is comparable to the state-of-the-art, as it out-
performs OPF-semi, which is commonly used for data
annotation. Indeed, LQ-KNN achieves higher annotation
accuracy at the expense of a smaller number of annotated
samples from 1.5% to 3.8% fewer samples labeled by LQ-
KNN) for all the tested datasets. Another advantage of our
method over OPF-semi is its annotation speed; it is faster
than OPF-semi by a factor of 102 − 103, which can be
nonnegligible when annotating large datasets. This dif-
ference in annotation time is explained on the basis that
using OPF-semi implies training a classifier using all of
the available samples (i.e., labeled and unlabeled), and
then predicting the labels of the unlabeled samples using
this classifier, which are time-costly tasks. Furthermore,
this experiment shows that our method, LQ-KNN, with
τ = 0.1 behaves better than the baseline Std-KNN. This
is even more evident when we increase τ, to reach anno-
tation accuracies of 99.34% to label 15.51% of samples
for τ = 0.5 and K = 20 for the MNIST dataset. What
is more, we observe smaller annotation accuracies for the
HITS dataset for all methods. For Std-KNN and LQ-KNN
this can be explained on the basis that gaseous emboli and
solid emboli can be easily confused in some cases, such
that the two clusters/ manifolds can overlap. Moreover,
when we propagate labels using samples that are at the
boundary between solid emboli and gaseous emboli, we
make more annotation errors. However, as the annotation
accuracies show, the use of the local quality of the pro-
jection allows the label propagation to be more cautious,
so samples that were wrongly projected at the boundary
are not used for label propagation. By the same token,
this experiment also reveals one key advantage of our pro-
posed method: the annotation error control. Indeed, due
to the hyper-parameters of our method, we can reduce the
annotation error at the expense of the number of labeled
samples. Figure ?? gives a clear example where by reduc-
ing the local quality threshold τ and the neighborhood K
considered for label propagation, we reduce the number
of annotation errors by labeling fewer samples. Addition-
ally, Figure ?? also shows that most of the annotation er-
rors are located between the boundaries of clusters of dif-
ferent classes; if we increase the local quality threshold,
incorrectly projected samples that are at the boundaries

between clusters are not going to be used for label propa-
gation, thus reducing the number of propagated errors.

Moreover, in general, the higher the annotation accu-
racy, the less samples are automatically labeled, which is
why when we increase τ, we have higher annotation ac-
curacies but fewer newly labeled samples. The success
of our method strongly depends on the structure assump-
tion (Chapelle et al., 2009). The local quality criterion
(Lueks et al., 2011) that we use allows it to be guaran-
teed that if the structure assumption is true in the feature
space obtained by the auto-encoder model, then it should
be true in the 2D reduced space obtained by t-SNE if the
local quality criterion is verified. We introduce some flex-
ibility to the local quality criterion by using a threshold
τ that allows us to tolerate more changes in the projected
space, and also allows us to label more samples. That is
why the higher τ, the fewer samples we annotate, because
the space of samples that can be annotated is reduced to
only ’good quality’ samples. Furthermore, we can see
that choosing good values for K and τ is not trivial, and
it depends on the application: if the quality of the labels
is crucial for the application, higher values of τ should be
favored (e.g., 0.3 ≤ τ ≤ 0.7) and/or smaller values of K
(e.g., K ≤ 5), paying with fewer labeled samples, whereas
if the quality of the labels is not crucial and the number
of samples is, higher values of K should be favored (e.g.,
K > 5) and/or smaller values of τ (e.g., τ ≤ 0.3). Finally,
one last interesting point highlighted by this experiment
is the importance of the propagation order. Indeed, in our
method we propose to start labeling the samples of higher
local qualities to establish an annotation order. The ra-
tionale behind this is that high local quality samples bet-
ter represent the local space where they are located than
lower quality samples, so it is more likely that the samples
located in that zone have the same label as the highest lo-
cal quality samples, rather than the lowest ones. For the
results obtained, this can be seen especially for high val-
ues of K, whereas for small values, there is no important
difference. This means that for applications that need to
consider large neighborhoods for label propagation, the
labeling order is very important.

Experiment 2. This experiment confirms the interest of
automatically selecting the best 2D projection using the
silhouette score. Indeed, both propagation methods
achieve considerably better performances for the best se-
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(a)

(b)

lected projection than for the worse selected projection.
As our method relies on the structure assumption, it is
important to try to keep the high-dimensional structures
in the lower-dimensional space. The silhouette score se-
lection strategy (i.e., highest score) does this by selecting
the projection that allows the samples with the same label
in the same structure to be kept. Moreover, this experi-
ment shows an advantage of LQ-KNN with respect to Std-
KNN. Indeed, LQ-KNN is more cautious when propagat-
ing the labels, as it labels fewer samples but with higher
accuracy. This result is interesting, as it shows that LQ-
KNN is more robust than Std-KNN against bad 2D pro-
jections.

Experiment 3. This experiment confirms that our method
improves the classification performances. On the one
hand, for the three tested datasets, we observe that train-
ing a CNN on the dataset obtained with LQ-KNN (i.e.,
K = 10, τ = 0.1) gives better results than training a
CNN on a dataset obtained without label propagation or
with Std-KNN label propagation. Additionally, this ex-

periment also confirms that using robust loss functions
is beneficial when using automatically labeled data, as
they allow annotation error to be compensated for. This
also explain why, when using robust loss functions, Std-
KNN and LQ-KNN have similar performances. Indeed,
the noise in the labels introduced by both methods is sim-
ilar (for the chosen parameters LQ-KNN is slightly better)
so the robust loss function allows to compensate this dif-
ference. However, when the annotation error difference
increases between the two label propagation methods, the
robust loss function does not allow to compensate this
gap, giving better classification performances to LQ-KNN
datasets than to Std-KNN datasets, as the OrganCMNIST
results showed it. On the other hand, this experiment
also confirms the interest in using label propagation meth-
ods to automatically annotate data and to increase the test
performances of the models developed for a real medi-
cal dataset. Label propagation allows the performances of
a CNN to be increased, to give better results than a CNN
trained on a limited dataset. When we start by propagating
the labels to less than 50% of the available labeled sam-
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ples, LQ-KNN outperforms Std-KNN. When the propor-
tion of labeled samples increases, both LQ-KNN and Std-
KNN have similar global behaviors, even if the LQ-KNN
datasets give classifiers with better mean performances,
specially when using robust loss functions.

Experiment 4. This experiment shows the stability of our
method for a large-scale dataset, and the benefits of LQ-
KNN propagation to improve the final classification per-
formances of a model. Models trained on the LQ-KNN-
Large dataset outperformed all of the Std-KNN trained
models for both loss functions (including those of exper-
iment 3). Additionally, by using a robust loss function to
compensate for the label noise introduced, we were able
to outperform HITS Whole CE/GCE in terms of MCC,
gaseous emboli and solid emboli accuracies. However,
this comes at the expense of a decrease in the artifact ac-
curacy. Our hypothesis that in this larger-scale dataset,
our 2D representations of the original HITS do not ver-
ify the structure assumption anymore (this might be be-
cause in the original high-dimensional space the struc-
ture hypothesis is not verified neither or because our auto-
encoder model is not adapted to this new dataset). Due to
this, when we automatically propagate the labels from the
labeled samples to the unlabeled samples, we introduce
an unexpectedly high noise in the labels of the artifact
class that the robust loss functions cannot compensate for.
However, as the results show, our LQ-KNN label prop-
agation method is more stable, as its artifact accuracy is
higher than that obtained with Std-KNN, and its gaseous
emboli accuracy remains similar (or even better) to the
HITS Whole gaseous emboli accuracy.

Choice of ks and kt. We discuss the choice of ks = 10
and kt = 10 for all of the experiments. These parame-
ters have an influence on the computation of the global
and local quality measures of the projection; ks controls
the size of the neighborhood that we use to evaluate the
structure preservation during the projection, while kt con-
trols the errors in terms of the rank change. As shown
in (Lueks et al., 2011), the global quality varies smoothly
for increasing values of ks and kt, and between consecu-
tive values of ks and kt there is little variation of the global
quality. For high values of ks and kt we have high values
of global quality, as we tolerate more errors and we con-
sider wider neighborhoods to compute the quality. How-

ever, a high value of the global quality by itself does not
necessarily mean that, globally, the neighborhood of the
samples was well preserved during the projection step. In-
deed, the value of the global quality should be interpreted
with the values of ks and kt: the smaller ks and kt, the more
the neighborhood structure of the samples is preserved
during projection, which is why we have smaller global
quality values (dimensionality reduction always modifies
the neighborhood of samples, as it reduces the number of
degrees of freedom). We choose ks = 10 and kt = 10,
as we propagate labels from labeled samples to their un-
labeled neighbors, so it is important to have a meaningful
value of the global and local qualities to select the samples
that can benefit from label propagation (which means that
we prefer smaller values of ks and kt).

Limitations. Our approach has several limitations. First,
the validation of the framework was limited to 3 datasets,
and one type of classifier. Evaluating our method on more
types of data (not only images) and models would help
to better study its genericity and effectiveness. Secondly,
a simple feature extraction model (AE) was used, and the
influence of different types of models has not been quanti-
tatively measured. Thirdly, our optimal selection strategy
can be expensive to compute and only takes advantage of
the labeled samples, which can lead to sub-optimal pro-
jections for label propagation. Fourthly, even if we show
that the choice ks = 10, kt = 10, K = 10 and τ = 0.1 tend
to give good results for different datasets, more efforts
need to be done to propose an easier strategy for hyper-
parameter selection. Finally, for classification, only one
robust loss function was tested, but other loss functions
can be used such as symmetric CE (Wang et al., 2019) and
other strategies can be adopted to deal with noisy-labels
(Song et al., 2021).

5. Conclusions

We proposed a semi-supervised learning approach
for semi-automatic annotation from sparsely annotated
datasets with controlled annotation errors. To do this, we
start by extracting features from the data in an unsuper-
vised manner, using an auto-encoder. Then, we use t-
SNE as the dimensionality reduction technique to project
the learned representations of the auto-encoder onto a 2D
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space, and we select the best projection using the silhou-
ette score. Then, we propagate the labels from the few
labeled samples to some unlabeled samples using a local
quality criterion based on (Lueks et al., 2011). This crite-
rion allows the labels from labeled samples to be propa-
gated to their neighbors only if both samples (i.e., labeled
and unlabeled) are close not only in the 2D space, but
also in the higher-dimensional space learned by the auto-
encoder. Finally, to compensate for the errors made by the
label propagation method, we use a robust loss function,
the GCE loss.

Our experiments show several results. First, our label
propagation method outperforms state-of-the-art methods
such as OPF-semi. Secondly, the choice of the hyper-
parameters of our proposed method allows us to control
the annotation errors. Thirdly, we show that the combi-
nation of our label propagation method with robust loss
functions improves the final classification performances
of the trained models on the semi-automatically labeled
datasets obtained. Fourthly, our method allows simi-
lar (and even better) classification performances to be
achieved than those obtained using a fully manually la-
beled dataset. This last point is particularly interesting, as
our method takes less than 0.2 ms to annotate one sample
with high accuracy, compared to 8 s for a human expert.
Finally, we showed that our method is applicable to dif-
ferent datasets by evaluating it on three different datasets
(two of which are publicly available). The two blocks that
need to be adapted to each dataset are the feature extrac-
tion block and the classification block.

As perspectives, we would like to incorporate a self-
training (Rosenberg et al., 2005) strategy into our method,
using robust loss functions and Bayesian approaches.
Moreover, during the self-training step, we would like
to directly learn the 2D representation used to propagate
the labels, instead of using t-SNE, which would allow
us to avoid the expensive search of the optimal projec-
tion space, one of the main weaknesses of our approach.
Furthermore, as our method allows manual annotation of
any samples, we would like to proceed as (Benato et al.,
2021), to manually annotate the samples that our method
cannot label with high confidence. Finally, as our main
goal is to improve the classification performances of TCD
data, we would like to incorporate the use of audio signals,
to improve the learned representations (auto-encoder and
2D space) and the classification performances.
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