Aller au contenu principal
Accueil

Main navigation

  • Actualités
    • Toutes les actualités
    • Séminaires - Soutenances
  • Présentation
    • CREATIS
    • Organigramme
    • Personnels
    • Effectifs
    • Contacts
    • Accès
  • Recherche
    • Equipes de recherche
    • Projets transversaux
    • Projets Structurants
    • Plateformes d'imagerie
    • Rapports d'activités
    • Notes d'information données
  • Contributions
    • Publications
    • Brevets
    • Logiciels
  • Formations
    • Implications dans les formations
    • Ecoles doctorales
  • Emplois et Stages
  • French French
  • English English
Search API form
User account menu
  • Account
    • Se connecter

Fil d'Ariane

  1. Accueil
  2. Deep learning based phase retrieval for X-ray phase contrast imaging

Deep learning based phase retrieval for X-ray phase contrast imaging

X-ray phase contrast imaging permits to reach nanometric resolution in tomographic imaging with several orders of magnitude higher sensitivity than using the attenuation [1]. The main drawback is that it needs an additional reconstruction step, known as phase retrieval, to yield quantitative images. This reconstruction problem is a non-linear inverse problem. We have previously developed algorithms based on linear approximations to solve this problem [2]. The non-linear problem remains difficult to treat, however. Therefore, the goal of this internship is to use deep learning for phase retrieval from X-ray phase contrast images. In particular, we will investigate various deep learning architectures [3] and compare them to model-based approaches. Training data sets will be generated using in-house software. Deep learning methods will be implemented using the TensorFlow library in Python. The developed methods will be compared to previously developed algorithms on data from the European Synchrotron Radiation Facility (ESRF).

[1]      R. Mokso, P. Cloetens, E. Maire, W. Ludwig, and J.-Y. Buffière, “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett., vol. 90, no. 14, p. 144104, Apr. 2007.

[2]      M. Langer et al., “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Trans. R. Soc. A, vol. 372, p. 20130129, 2014.

[3]      Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015.

Téléchargements

Type

Sujet de master

Statut

Recrutement passé

Periode

2019-2019

Contact

Max Langer, max.langer@creatis.insa-lyon.fr

Barre liens pratiques

  • Authentication
  • Intranet
  • Flux rss
  • Creatis sur Twitter
  • Webmail
Accueil

Footer menu

  • Contact
  • Accès
  • Newsletter
  • Mentions Légales