Skip to main content
Home

Main navigation

  • News
    • All news
    • Seminars
  • Presentation
    • CREATIS
    • Organigram
    • People directory
    • Staff
    • Contacts
    • Access
  • Research
    • Research teams
    • Transversal projects
    • Structuring projects
    • Imaging platform
    • Activity reports
    • Data information note
  • Contributions
    • Publications
    • Patents
    • Software
  • Studies & Training
    • Implications dans les formations
    • Doctoral Studies
  • Jobs Opportunities
  • French French
  • English English
Search API form
User account menu
  • Account
    • Log in

Breadcrumb

  1. Accueil
  2. Segmentation

Segmentation

Automatic segmentation of lungs in a severe case of ARDS

We use deep learning techniques to delineate the lungs and vascular trees despite contrast changes due to pathological conditions.


Penarrubia L., Verstraete A., Orkisz M., Dávila Serrano E.E., Boussel L., Yonis H., Mezidi M., Dhelft F., Danjou W., Bazzani A., Sigaud F., Bayat S., Terzi N., Girard M., Bitker L., Roux E., and Richard J.-C., "Precision of CT-derived alveolar recruitment assessed by human observers and a machine learning algorithm in moderate and severe ARDS ", Intensive Care Medicine Experimental, 2023, 11, 8. DOI: 10.1186/s40635-023-00495-6.

Penarrubia L., et al. “Improving motion-mask segmentation in thoracic CT with multi-planar U-nets”, Medical Physics, 49, 420-431, 2022, DOI: 10.1002/mp.15347.

Back to FILM page 

Téléchargements

Barre liens pratiques

  • Authentication
  • Intranet
  • Rss feed
  • Creatis on Twitter
  • Webmail
Home

Footer menu

  • Contact
  • Map
  • Newsletter
  • Legal Notices