Aller au contenu principal
Accueil

Main navigation

  • Actualités
    • Toutes les actualités
    • Séminaires - Soutenances
  • Présentation
    • CREATIS
    • Organigramme
    • Personnels
    • Effectifs
    • Contacts
    • Accès
  • Recherche
    • Equipes de recherche
    • Projets transversaux
    • Projets Structurants
    • Plateformes d'imagerie
    • Rapports d'activités
    • Notes d'information données
  • Contributions
    • Publications
    • Brevets
    • Logiciels
  • Formations
    • Implications dans les formations
    • Ecoles doctorales
  • Emplois et Stages
  • French French
  • English English
Search API form
User account menu
  • Account
    • Se connecter

Fil d'Ariane

  1. Accueil
  2. JOINT DESPECKLING-DECONVOLUTION (JDD) OF ULTRASOUND DATA

JOINT DESPECKLING-DECONVOLUTION (JDD) OF ULTRASOUND DATA

CONTEXT:
Clinical ultrasound images are often analyzed in in challenging conditions as one is confronted to speckle noise and blurring. Enhancing these images can help both help the practitioners for a better interpretation and be a pre-processing step for further tasks such as segmentation and registration. Recently, in a series of works, [1][2], we proposed a method to called wavelet-fisz (WF) despeckling which aims at removing speckle from US images. This method has proved to be competitive with state-of-the-art methods and enjoys adaptability and easy-tuning. However, the obtained images (cf. Figure in the PDF file) are often still blurred. The aim of this project is to Improve the resolution of the WF algorithm results.
 
OBJECTIVE:
The purpose of this internship is to extend WF to perform jointly speckle removal and deconvolution. In particular, the student will explore the characteristics of the point-spread function (PSF) in the wavelet-domain [3] and propose a scheme that enables to solve the despeckling-deconvolution problem through wavelet-thresholding [4].
 
ROAD MAP:
1/ Understanding the wavelet-thresholding paradigm, the WF technique and the behavior of convolution operators in the wavelet-domain through the existing literature.
2/ Characterization of the PSF and its wavelet decomposition.
3/ Constructing a scheme for coupling despeckling and deconvolution.
4/ Validation of the algorithm on simulated and real data.
5/ Writing a scientific report on the results in English.
 
SKILLS:
Potential applicants are required to have a strong knowledge in signal / image processing or/and applied mathematics. Basic knowledge on wavelet processing is likable but not necessary. The student is free to use any programming language (Matlab, Python, C++,...)
 
[1] Y. Farouj, J.M. Freyermuth, L. Navarro, M. Clausel, P. Delachartre, Hyperbolic Wavelet-Fisz denoising for a model arising in Ultrasound Imaging. IEEE Trans. Comp. Imag. (2017).
[2] Y. Farouj, J.M. Freyermuth, L. Navarro, M. Clausel, P. Delachartre, Ultrasound Spatio-temporal Despeckling via Kronecker Wavelet-Fisz Thresholding. Under review (2017).
[3] Yves Meyer, Ondelettes et opérateurs.
[4] Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. biometrika, 425-455.

ANNEX: slides of the proposed internship.

Barre liens pratiques

  • Authentication
  • Intranet
  • Flux rss
  • Creatis sur Twitter
  • Webmail
Accueil

Footer menu

  • Contact
  • Accès
  • Newsletter
  • Mentions Légales